Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
One-step superhydrophobic coating using hydrophobized cellulose nanofibrils
Show others and affiliations
2018 (English)In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 544, p. 152-158Article in journal (Refereed) Published
Abstract [en]

Superhydrophobic surfaces have high potential in self-cleaning and anti-fouling applications. We developed a one-step superhydrophobic coating formulation containing sodium oleate (NaOl), hydrophobized precipitated calcium carbonate and biobased cellulose nanofibrils (CNFs) hydrophobized with either alkyl ketene dimer (AKD) or amino propyl trimethoxy silane (APMS) as a binder to fix and distribute the particles. Coatings were made on paperboard and the wetting behavior of the surface was assessed. Static, advancing and receding contact angles with water as well as roll-off and water shedding angle were compared to coatings made with styrene butadiene latex as binder instead of CNFs. Modifications with alkyl ketene dimer showed most promising results for a viable process in achieving superhydrophobic paperboard but required reformulation of the coating with optimized and reduced amount of NaOl to avoid surfactant-induced wetting via excess NaOl. A static water contact angle of 150° was reached for the CNF-AKD. The use of CNFs enables the improvement of coating quality avoiding cracking with the use of nanocellulose as a renewable binder.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 544, p. 152-158
Keyword [en]
Cellulose nanofibrils, Paperboard, Superhydrophobicity
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-227572DOI: 10.1016/j.colsurfa.2017.12.059ISI: 000428257100019Scopus ID: 2-s2.0-85042307822OAI: oai:DiVA.org:kth-227572DiVA, id: diva2:1205580
Note

QC 20180514

Available from: 2018-05-14 Created: 2018-05-14 Last updated: 2018-05-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Swerin, Agne

Search in DiVA

By author/editor
Swerin, Agne
By organisation
Coating Technology
In the same journal
Colloids and Surfaces A: Physicochemical and Engineering Aspects
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf