Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Weil restriction and the Quot scheme
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0001-6634-5202
2015 (English)In: Algebraic Geometry, ISSN 2313-1691, E-ISSN 2214-2584, Vol. 2, no 4, p. 514-534Article in journal (Refereed) Published
Abstract [en]

We introduce a concept that we call module restriction, which generalizes the classical Weil restriction. After having established some fundamental properties as existence and étaleness, we apply our results to show that the Quot functor Quotn FX/S of Grothendieck is representable by an algebraic space for any quasi-coherent sheaf FX on any separated algebraic space X → S.

Place, publisher, year, edition, pages
European Mathematical Society Publishing House , 2015. Vol. 2, no 4, p. 514-534
Keywords [en]
Fitting ideals, Quot scheme, Weil restriction
National Category
Algebra and Logic
Identifiers
URN: urn:nbn:se:kth:diva-227901DOI: 10.14231/AG-2015-023ISI: 000218561600007Scopus ID: 2-s2.0-85045455227OAI: oai:DiVA.org:kth-227901DiVA, id: diva2:1205720
Note

QC 2018-05-15

Export Date: 14 May 2018; Article; Correspondence Address: Skjelnes, R.M.; Department of Mathematics, KTHSweden; email: skjelnes@kth.se

Available from: 2018-05-15 Created: 2018-05-15 Last updated: 2018-05-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Skjelnes, Roy M.
By organisation
Mathematics (Div.)
In the same journal
Algebraic Geometry
Algebra and Logic

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf