Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Demethylation and other modifications of industrial softwood kraft lignin by laccase-mediators
KTH. RISE Res Inst Sweden, SE-11486 Stockholm, Sweden.;.
KTH.
KTH. RISE Res Inst Sweden, SE-11486 Stockholm, Sweden..
2018 (English)In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 72, no 5, p. 357-365Article in journal (Refereed) Published
Abstract [en]

Substitution of phenol in phenol-formaldehyde (PF) resin preparations by technical lignins is hindered by the inherently lower reactivity of lignin compared to phenol. Demethylation of an industrial softwood kraft lignin (SKL) to improve its reactivity is the focus of this paper. To this purpose, kraft lignin (KL) was treated with two commercial laccases, NS51002 (L1) and NS51003 (L2), for 24 h in combination with three mediators, 2,2'-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 1-hydroxybenzotriazole (HBT) and 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO). The characterizations of the reaction solution and the resultant KL showed that methanol was released as a result of the methoxy group splitting from the aromatic rings, while such demethylation was dependent on the laccase-mediator system (LMS). The catechol structures formed, which were further oxidized to a quinone structures prone to polymerization, led to molecular mass increment. Also this reaction was LMS dependent. The same is true to the cleavage of beta-O-4' linkages, which resulted in depolymerization. The L1-ABTS, L1-TEMPO and L2-HBT combinations are the most efficient and the resulting modified lignin would be suitable to phenol substitution. Challenging is the lignin polymerization following the demethylation, especially in case of L1-ABTS, which might inhibit the reactivity of the treated lignin.

Place, publisher, year, edition, pages
WALTER DE GRUYTER GMBH , 2018. Vol. 72, no 5, p. 357-365
Keywords [en]
C-13-NMR, 2D-NMR, P-31-NMR, demethylation, FTIR, laccase, lignin, mediator, SEC
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-227737DOI: 10.1515/hf-2017-0096ISI: 000431128200002Scopus ID: 2-s2.0-85043767270OAI: oai:DiVA.org:kth-227737DiVA, id: diva2:1205758
Note

QC 20180515

Available from: 2018-05-15 Created: 2018-05-15 Last updated: 2018-05-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Wang, MiaoZhao, YadongLi, Jiebing
By organisation
KTH
In the same journal
Holzforschung
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf