Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Conductivity of SDC and (Li/Na)2CO3 composite electrolytes in reducing and oxidising atmospheres
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
School of Chemical Engineering and Technology, Tianjin University, China.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.ORCID iD: 0000-0002-2268-5042
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.ORCID iD: 0000-0001-9203-9313
Show others and affiliations
2007 (English)In: Journal of Power Sources, ISSN 0378-7753, Vol. 172, no 2, 520-529 p.Article in journal (Refereed) Published
Abstract [en]

Composite electrolytes made of samarium-doped cerium oxide and a mixture of lithium carbonate and sodium carbonate salts are investigated with respect to their structure, morphology and ionic conductivity. The composite electrolytes are considered promising for use in so called intermediate temperature solid oxide fuel cells (IT-SOFC), operating at 400-600 degrees C. The electrolytes are tested in both gaseous anode (reducing) and cathode (oxidising) environments and at different humidities and carbon dioxide partial pressures. For the structure and morphology measurements, it was concluded that no changes occur to the materials after usage. From measurements of melting energies, it was concluded that the melting point of the carbonate salt phase decreases with decreasing fraction of carbonate salt and that a partial melting occurs before the bulk melting point of the salt is reached. For all the composites, two regions may be observed for the conductivity, one below the carbonate salt melting point and one above the melting point. The conductivity is higher when electrolytes are tested in anode gas than when tested in cathode gas, at least for electrolytes with less than half the volume fraction consisting of carbonate salt. The higher the content of carbonate salt phase, the higher the conductivity of the composite for the temperature region above the carbonate melting point. Below the melting point, though, the conductivity does not follow this trend. Calculations on activation energies for the conductivity show no trend or value that indicates a certain transport mechanism for ion transport, either when changing between the different composites or between different gas environments.

Place, publisher, year, edition, pages
2007. Vol. 172, no 2, 520-529 p.
Keyword [en]
Composite; Conductivity; Electrolyte; Fuel cell; ITSOFC; SDC
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-7139DOI: 10.1016/j.jpowsour.2007.07.065ISI: 000250654700004Scopus ID: 2-s2.0-34748894956OAI: oai:DiVA.org:kth-7139DiVA: diva2:12058
Note
QC 20100630Available from: 2007-05-16 Created: 2007-05-16 Last updated: 2010-12-03Bibliographically approved
In thesis
1. The anode and the electrolyte in the MCFC
Open this publication in new window or tab >>The anode and the electrolyte in the MCFC
2007 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

A goal of the Swedish government is to increase the usage of renewable fuels and biomass-based fuels. Fuel cells, and especially the MCFC, are useful for these types of fuels. The Swedish market may benefit from the MCFC in two ways: increased efficiency of the biofuels and also utilisation of produced heat in district heating. Most of the commercial MCFC systems today are optimised for use with methane. The possibility to utilise biomass in Sweden makes it important to study how the MCFC may be adapted or optimised for good performance and low degradation with gas produced from biomass or other renewable fuels.

This thesis is focused on methods that may be used to investigate and evaluate MCFC electrodes and electrolytes with renewable fuels i.e. CO2-containing gases. The methods and results are both experimental and mathematically modelled. The objectives of this thesis are to better understand how the performance of the anode is dependent on different fuels. Anode kinetics and the water-gas shift reaction have been investigated as well as the possibility to increase cell lifetime by increasing the initial electrolyte amount by having the anode as a reservoir. The effect of segregation of cations in the electrolyte during operation has also been studied.

It was found that if the gas composition at the current collector inlet is in equilibrium according to the water gas-shift reaction the gas composition inside the electrode is almost uniform. However, if the gas is not in equilibrium then the concentration gradients inside the current collector have a large effect on the gas composition inside the electrode. The conversion of the gas in the gas flow channels according to the water-gas shift reaction depends on the gas flow rate. For an anode used in a gas mixture of humidified hydrogen and carbon dioxide that are not in equilibrium some solubility of Ni in a (Li/Na)2CO3 mixture was found. To have the anode act as an electrolyte reservoir to prolong cell lifetime the anode pore size should be carefully matched with that of the cathode and a bimodal pore-size distribution for the anode is preferable to have as good performance as possible for as large electrolyte filling degree interval as possible. Modelling results of segregation of cations in the electrolyte during operation indicate that the electrolyte composition changes during operation and that the lithium ions are enriched at the anode for both types of electrolyte used for the MCFC. The electrolyte composition changes are small but might have to be considered in long-time operation. The results from this thesis may be used to better understand how the MCFC may be used for operation with renewable fuels and how electrodes may be designed to prolong cell lifetime.

Abstract [sv]

Ett av den svenska regeringens mål är att öka användandet av förnyelsebara bränslen och bränslen från biomassa. Bränsleceller och framförallt MCFC är användbara för dessa typer av bränslen. Den svenska marknaden kan dra fördelar av MCFC på två sätt; ökad bränsleutnyttjandegrad och utnyttjande av producerad värme för fjärrvärme. De flesta kommersiella MCFC-systemen idag är optimerade för användning av metan. Möjligheten att använda biomassa på den svenska marknaden gör det viktigt att studera hur MCFC kan anpassas eller optimeras för bra prestanda och låg degradering för användning med gas från biomassa eller andra förnyelsebara bränslen.

Fokus i denna avhandling är på metoder som kan användas för att undersöka och utvärdera MCFC-elektroder och -elektrolyter med förnyelsebara bränslen, dvs. gaser innehållande CO2. Metoderna och resultaten är både experimentella och matematiskt modellerade. Målet med denna avhandling är att bättre förstå hur anodens prestanda beror på användningen av olika bränslen. Anodens kinetik och vattengasskiftreaktionen har studerats liksom möjligheten att förlänga cellens livstid genom att öka den initiala mängden elektrolyt medelst användning av anoden som reservoar. Effekten av segregation av katjoner i elektrolyten under last har också undersökts.

Om gassammansättningen är i jämvikt enligt vattengasskiftreaktionen vid inloppet till strömtilledaren kommer gassammansättningen att vara nära uniform inuti elektroden. Om ingående gas inte är i jämvikt kommer stora koncentrationsgradienter uppkomma i strömtilledaren och påverka gassammansättningen i elektroden. Omsättningen med avseende på vattenskiftreaktionen av gasen i flödeskanalen verkar vara beroende av gasens flödeshastighet. För en anod som används i en uppfuktad blandning av vätgas och koldioxid som inte är i jämvikt befanns det att Ni har en viss löslighet i (Li/Na)2CO3. För att kunna använda anoden som reservoar för elektrolyt för att förlänga livstiden för MCFC skall anodens porstorleksfördelning överensstämma med katodens och ha en bimodal porstorleksfördelning för att ge en tillräckligt god prestanda i ett så stort elektrolytfyllnadsgradsintervall som möjligt. Modelleringsresultat för segregering av katjoner i elektrolyten under drift visar att litiumjoner anrikas i anoden för båda typerna av elektrolyt som används i MCFC. Elektrolytkoncentrationsförändringarna är små men kan behövas tas i beaktande vid långa driftstider. Denna avhandlings resultat kan användas för att bättre förstå hur MCFC skall anpassas för drift med förnyelsebara bränslen och hur elektroder kan utformas för att förlänga livstiden.

Place, publisher, year, edition, pages
Stockholm: Kemiteknik, 2007. [7], 47 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2007:32
Keyword
composite electrolytes, electrode kinetics, nickel solubility, porous electrode, reformate, water-gas shift reaction, electrolyte, electrolyte distribution, hydrogen oxidation reaction, ion segregation, mass transport, mathematical modelling, MCFC, molten carbonate fuel cell
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-4382 (URN)978-91-7178-687-6 (ISBN)
Public defence
2007-06-01, F3, KTH, Lindstedtsvägen 26, Stockholm, 13:00
Opponent
Supervisors
Note
QC 20100630Available from: 2007-05-16 Created: 2007-05-16 Last updated: 2012-03-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lagergren, CarinaLindbergh, Göran

Search in DiVA

By author/editor
Bodén, AndreasLagergren, CarinaLindbergh, Göran
By organisation
Chemical Engineering and Technology
In the same journal
Journal of Power Sources
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 186 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf