Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal-organic framework nanosheets
Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
Show others and affiliations
2018 (English)In: Applied Catalysis B: Environmental, ISSN 0926-3373, E-ISSN 1873-3883, Vol. 227, p. 54-60Article in journal (Refereed) Published
Abstract [en]

An ultrathin two-dimensional Zn porphyrin-based metal-organic framework (Zn-MOF nanosheets) is developed and used for the first time in photoreduction of CO2 to CO. Consequently, two novelty noble-metal-free hybrid photocatalytic systems are established and displayed outstanding photocatalytic activity and selectivity for CO evolution under mild photocatalytic reaction conditions. The insight revealed Zn-MOF nanosheets as photo sensitizer displays a better charge transport ability and longer lifetime of the photogenerated electron-hole pairs than the Zn-MOF bulk, which are confirmed by photoelectrochemical impedance and photoluminescence (PL) measurements. These studies show that the development of noble-metal-free photocatalytic systems and various MOF-based materials for photocatalytic applications are promising.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV , 2018. Vol. 227, p. 54-60
Keywords [en]
CO2 reduction, Photocatalysis, Metal-organic frameworks, Nanosheets, Zn porphyrin
National Category
Other Chemistry Topics
Identifiers
URN: urn:nbn:se:kth:diva-226178DOI: 10.1016/j.apcatb.2018.01.028ISI: 000428491000006Scopus ID: 2-s2.0-85042913816OAI: oai:DiVA.org:kth-226178DiVA, id: diva2:1206138
Note

QC 20180516

Available from: 2018-05-16 Created: 2018-05-16 Last updated: 2018-05-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Sun, Licheng

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Chemistry
In the same journal
Applied Catalysis B: Environmental
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf