Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Technical Note: Comparison of first‐ and second‐generation photon‐counting slit‐scanning tomosynthesis systems
KTH, School of Engineering Sciences (SCI), Physics, Physics of Medical Imaging. Philips Mammography Solutions.ORCID iD: 0000-0001-9152-9089
Philips Mammography Solutions.
Philips.
Philips Research.
2018 (English)In: Medical PhysicsArticle in journal (Refereed) Published
Abstract [en]

Purpose: Digital breast tomosynthesis (DBT) is an emerging tool for breast-cancer screening and diagnostics. The purpose of this study is to present a second-generation photon-counting slitscanning DBT system and compare it to the first-generation system in terms of geometry and image quality. The study presents the first image-quality measurements on the second-generation system. Method: The geometry of the new system is based on a combined rotational and linear motion, in contrast to a purely rotational scan motion in the first generation. In addition, the calibration routines have been updated. Image quality was measured in the center of the image field in terms of in-slice modulation transfer function (MTF), artifact spread function (ASF), and in-slice detective quantum efficiency (DQE). Images were acquired using a W/Al 29 kVp spectrum at 13 mAs with 2 mm Al additional filtration and reconstructed using simple back-projection. Result: The in-slice 50% MTF was improved in the chest-mammilla direction, going from 3.2 to 3.5 lp/mm, and the zero-frequency DQE increased from 0.71 to 0.77. The MTF and ASF were otherwise found to be on par for the two systems. The new system has reduced in-slice variation of the tomographic angle. Conclusions: The new geometry is less curved, which reduces in-slice tomographic-angle variation, and increases the maximum compression height, making the system accessible for a larger population. The improvements in MTF and DQE were attributed to the updated calibration procedures. We conclude that the second-generation system maintains the key features of the photon-counting system while maintaining or improving image quality and improving the maximum compression height. 

Place, publisher, year, edition, pages
John Wiley & Sons, 2018.
Keyword [en]
ASF; breast tomosynthesis; DQE; MTF; photon counting; Slit scan
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:kth:diva-228321DOI: 10.1002/mp.12735ISI: 000424809700016Scopus ID: 2-s2.0-85040190334OAI: oai:DiVA.org:kth-228321DiVA, id: diva2:1209061
Note

QC 20180522

Available from: 2018-05-21 Created: 2018-05-21 Last updated: 2018-05-22Bibliographically approved
In thesis
1. Spectral image quality and applications in breast tomosynthesis
Open this publication in new window or tab >>Spectral image quality and applications in breast tomosynthesis
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the 1970s, it was determined that screening mammography is an efficient tool in fighting the increasing number of women dying from breast cancer, and many countries have established screening programs since then. Mammography systems have improved substantially over the years with one of the major advances being the transition from x-ray film to digital x-ray detectors. Following this development, the number of women dying from breast cancer has decreased, but there is still much room for improvement. One technology that is changing the breast imaging landscape is breast tomosynthesis; tomographic imaging with in-plane resolution similar to that of mammography, albeit limited height resolution. Breast tomosynthesis is commonly implemented with flat-panel detectors, but line detectors in a slit-scanning geometry can also be used. The latter configuration allows for more complex detector technologies, such as spectral photon-counting detectors that enable single-shot spectral imaging. The combination of spectral imaging and tomosynthesis opens up for a range of new applications, but the slit scanning geometry, which differs substantially from that of flat-panel tomosynthesis systems, and the factors affecting image quality have not been well understood. This thesis aims at filling this gap. Image quality and the parameters that influence image quality in spectral photon-counting slit-scanning breast tomosynthesis are characterized and analyzed using cascaded-systems modelling and linear image quality metrics. In addition, the thesis goes into characterizing the x-ray properties of breast tissue, an important input parameter for accurate material decomposition of in-vivo tissue. Material decomposition with spectral imaging opens up a range of applications, such as accurate measurement of volumetric breast density and spectral lesion characterization for decision support as part of mammography screening, and contrast-enhanced K-edge imaging for diagnostics. Tomosynthesis combined with material decomposition has the potential to improve these methods further by, for instance, separating lesions or regions of interest from surrounding fibro-glandular tissue in quantitative 3D maps of breast tissue.

Abstract [sv]

På 1970-talet fann man att mammmografiscreening är en effektiv metod för att bekämpa ökningen av antalet kvinnor som dör av bröstcancer, och sedan dess har screeningprogram etablerats i en rad länder. Den tekniska utvecklingen av mammografisystem har under åren varit stor, och en av de största förändringarna var övergången från analoga till digitala röntgendetektorer. Antalet kvinnor som dör av bröstcancer har följaktligen minskat men det finns fortfarande utrymme för förbättring. En teknik som håller på att förändra marknadslandskapet för bröstavbildning idag är brösttomosyntes, d.v.s. tomografisk avbildning med en planupplösning liknande den i mammografi men med begränsad höjdupplösning. Brösttomosyntes görs vanligtvis med areadetektorer (s.k. flat-panel-detektorer) men det går också att använda linjedetektorer i en slitskannande geometri. Den senare tekniken tillåter mer avancerad detektorteknologi såsom fotonräknande detektorer som möjliggör spektralavbildning i varje exponering. Kombinationen av spektralavbildning och tomosyntes öppnar för nya tillämpningar men geometrin, som skiljer sig från den som används tillsammans med areadetektorer, och den bildkvalitet som tekniken ger upphov till har hittills varit relativt outforskade. Målet med den här avhandlingen är att fylla den luckan. Bildkvalitet och de parametrar som påverkar bildkvalitet i spektral fotonräknande och slitskannande brösttomosyntes karaktäriseras och analyseras med hjälp av kaskadmodellering och linjära bildkvalitetsmått. Avhandlingen undersöker även röntgenkaraktärisering av bröstvävnad som ger viktig information för att kunna göra materialdekomposition på vävnad in vivo. Materialdekomposition med spektral avbildning möjliggör en rad nya tillämpningar såsom noggrann mätning av volymetrisk bröstdensitet och karaktärisering av lesioner för beslutsstöd som en del av mammografiscreening, samt kontrastförstärkt K-kants avbildning för diagnostik. Tomosyntes kombinerat med spektralavbildning har potentialen att förbättra dessa tekniker ytterligare genom att separera lesioner eller områden av intresse från omkringliggande fibroglandulär vävnad i kvantitativa 3D-kartor av bröstvävnad.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2018. p. 51
Series
TRITA-SCI-FOU ; 2018:30
National Category
Radiology, Nuclear Medicine and Medical Imaging
Research subject
Medical Technology
Identifiers
urn:nbn:se:kth:diva-228342 (URN)978-91-7729-842-7 (ISBN)
Public defence
2018-06-15, Svedbergssalen (FD5), Roslagstullsbacken 21, Albanova Universitetscentrum, Kungl Tekniska högskolan, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 621-2013-5816
Note

QC 20180522

Available from: 2018-05-22 Created: 2018-05-22 Last updated: 2018-05-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Berggren, Karl
By organisation
Physics of Medical Imaging
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf