Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Composite Hole-Transport Materials Based on a Metal-Organic Copper Complex and Spiro-OMeTAD for Efficient Perovskite Solar Cells
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0001-5069-3245
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.ORCID iD: 0000-0002-1591-5815
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0002-4521-2870
Show others and affiliations
2018 (English)In: SOLAR RRL, ISSN 2367-198X, Vol. 2, no 5, article id UNSP 1700073Article in journal (Refereed) Published
Abstract [en]

Spiro-OMeTAD has been the most commonly used hole-transport material in perovskite solar cells. However, this material shows intrinisic drawbacks, such as low hole mobility and conductivity in its pristine form, as well as self-aggregation when deposited as thin film. These are not beneficial properties for efficient hole transport and extraction. In order to address these issues, we have designed a new type of composite hole-transport materials based on a new metal-organic copper complex (CuH) and Spiro-OMeTAD. The incorporation of the molecularly bulky HTM CuH into the Spiro-OMeTAD material efficiently improves the hole mobility and suppresses the aggregation in the Spiro-OMeTAD film. As a result, the conversion efficiencies obtained for perovskite solar cells based on the composite HTM system reached as high as 18.83%, which is superior to solar cells based on the individual hole-transport materials CuH (15.75%) or Spiro-OMeTAD (14.47%) under the same working conditions. These results show that composite HTM systems may constitute an effective strategy to further improve the efficiency of perovskite solar cells.

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH , 2018. Vol. 2, no 5, article id UNSP 1700073
Keyword [en]
Hole transport materials, mobility, perovskite solar cells, small molecules
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-228439DOI: 10.1002/solr.201700073ISI: 000432036200001OAI: oai:DiVA.org:kth-228439DiVA, id: diva2:1210648
Note

QC 20180529

Available from: 2018-05-29 Created: 2018-05-29 Last updated: 2018-05-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Hua, YongLiu, PengLi, YuanyuanSun, LichengKloo, Lars

Search in DiVA

By author/editor
Hua, YongLiu, PengLi, YuanyuanSun, LichengKloo, Lars
By organisation
Applied Physical ChemistryWallenberg Wood Science CenterChemical Engineering
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf