Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sorption of perfluoroalkyl substances (PFASs) to an organic soil horizon – Effect of cation composition and pH
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. Swedish University of Agricultural Sciences, Sweden.ORCID iD: 0000-0001-8771-7941
Show others and affiliations
2018 (English)In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 207, p. 183-191Article in journal (Refereed) Published
Abstract [en]

Accurate prediction of the sorption of perfluoroalkyl substances (PFASs) in soils is essential for environmental risk assessment. We investigated the effect of solution pH and calculated soil organic matter (SOM) net charge on the sorption of 14 PFASs onto an organic soil as a function of pH and added concentrations of Al3+, Ca2+ and Na+. Often, the organic C-normalized partitioning coefficients (KOC) showed a negative relationship to both pH (Δlog KOC/ΔpH = −0.32 ± 0.11 log units) and the SOM bulk net negative charge (Δlog KOC = −1.41 ± 0.40 per log unit molc g−1). Moreover, perfluorosulfonic acids (PFSAs) sorbed more strongly than perfluorocarboxylic acids (PFCAs) and the PFAS sorption increased with increasing perfluorocarbon chain length with 0.60 and 0.83 log KOC units per CF2 moiety for C3–C10 PFCAs and C4, C6, and C8 PFSAs, respectively. The effects of cation treatment and SOM bulk net charge were evident for many PFASs with low to moderate sorption (C5–C8 PFCAs and C6 PFSA). However for the most strongly sorbing and most long-chained PFASs (C9–C11 and C13 PFCAs, C8 PFSA and perfluorooctane sulfonamide (FOSA)), smaller effects of cations were seen, and instead sorption was more strongly related to the pH value. This suggests that the most long-chained PFASs, similar to other hydrophobic organic compounds, are preferentially sorbed to the highly condensed domains of the humin fraction, while shorter-chained PFASs are bound to a larger extent to humic and fulvic acid, where cation effects are significant.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 207, p. 183-191
Keyword [en]
Geochemical modeling, PFOA, PFOS, Soil–water partitioning, Surface net charge, Visual MINTEQ
National Category
Soil Science
Identifiers
URN: urn:nbn:se:kth:diva-228704DOI: 10.1016/j.chemosphere.2018.05.012Scopus ID: 2-s2.0-85047261550OAI: oai:DiVA.org:kth-228704DiVA, id: diva2:1210747
Funder
Swedish Research Council, 2015-03938
Note

QC 20180529

Available from: 2018-05-29 Created: 2018-05-29 Last updated: 2018-05-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Gustafsson, Jon Petter

Search in DiVA

By author/editor
Gustafsson, Jon Petter
By organisation
Sustainable development, Environmental science and Engineering
In the same journal
Chemosphere
Soil Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf