Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sensitivity analysis of debris properties in lower plenum of a Nordic BWR
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety. AlbaNova Univ Ctr, SE-10691 Stockholm, Sweden.ORCID iD: 0000-0001-8216-9376
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety. AlbaNova Univ Ctr, SE-10691 Stockholm, Sweden.ORCID iD: 0000-0002-0683-9136
2018 (English)In: Nuclear Engineering and Design, ISSN 0029-5493, E-ISSN 1872-759X, Vol. 332, p. 374-382Article in journal (Refereed) Published
Abstract [en]

Severe accident management (SAM) in Nordic Boiling Water Reactors (BWR) employs ex-vessel core debris coolability. The melt released from the vessel is poured into a deep pool of water and is expected to fragment, quench, and form a coolable debris bed. Success of the strategy is contingent upon the melt release mode from the vessel, which determine conditions for (i) the debris bed coolability, (ii) steam explosion that present credible threats to containment integrity. Melt release conditions are recognized as the major source of uncertainty in quantification of the risk of containment failure in Nordic BWRs. The characteristics of melt release are determined by the in-vessel accident scenarios and phenomena, subject to aleatory and epistemic uncertainties respectively. Specifically, properties of the debris relocated into the lower head determine conditions for the corium interactions with the vessel structures (such as instrumentation guide tubes IGTs, control rod guide tubes CRGTs), vessel failure and melt release. This work is focused on the evaluation of uncertainty in core degradation progression and its effect on the resultant properties of relocated debris in lower plenum of Nordic BWR. We use MELCOR code for prediction of the accident progression. The main goal of this paper is to characterize the range of possible debris properties in lower plenum and its sensitivity towards different modelling parameters, which is of paramount importance for the analysis of in-vessel debris coolability and vessel failure mode in the risk assessment framework.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 332, p. 374-382
Keywords [en]
Severe accident, Nordic BWR, ROAAM, MELCOR
National Category
Other Chemistry Topics
Identifiers
URN: urn:nbn:se:kth:diva-227209DOI: 10.1016/j.nucengdes.2018.03.029ISI: 000430395700033OAI: oai:DiVA.org:kth-227209DiVA, id: diva2:1210798
Note

QC 20180529

Available from: 2018-05-29 Created: 2018-05-29 Last updated: 2018-05-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Galushin, SergeyKudinov, Pavel

Search in DiVA

By author/editor
Galushin, SergeyKudinov, Pavel
By organisation
Nuclear Power Safety
In the same journal
Nuclear Engineering and Design
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf