Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance of the ATLAS track reconstruction algorithms in denseenvironments in LHC Run 2
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0001-6945-1916
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0003-3867-0336
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
Show others and affiliations
Number of Authors: 28652018 (English)In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 10, article id 673Article in journal (Refereed) Published
Abstract [en]

With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb(-1) of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, themeasured fraction that fail to be reconstructed is 0.061 +/- 0.006 (stat.) +/- 0.014 (syst.) and 0.093 +/- 0.017 (stat.) +/- 0.021 (syst.) for jet transverse momenta of 200-400 GeV and 1400-1600 GeV, respectively.

Place, publisher, year, edition, pages
Springer, 2018. Vol. 77, no 10, article id 673
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-228875DOI: 10.1140/epjc/s10052-017-5225-7ISI: 000429045200001PubMedID: 29081711OAI: oai:DiVA.org:kth-228875DiVA, id: diva2:1211089
Note

QC 20180530

Available from: 2018-05-30 Created: 2018-05-30 Last updated: 2019-08-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Kastanas, Konstatinos A.Lund-Jensen, BengtRipellino, GiuliaSidebo, P. EdvinStrandberg, Jonas

Search in DiVA

By author/editor
Kastanas, Konstatinos A.Lund-Jensen, BengtRipellino, GiuliaSidebo, P. EdvinStrandberg, Jonas
By organisation
Particle and Astroparticle Physics
In the same journal
European Physical Journal C
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf