Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion
Show others and affiliations
2018 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 152, p. 200-214Article in journal (Refereed) Published
Abstract [en]

Elemental segregation is a ubiquitous phenomenon in additive-manufactured (AM) parts due to solute rejection and redistribution during the solidification process. Using electron microscopy, in situ synchrotron X-ray scattering and diffraction, and thermodynamic modeling, we reveal that in an AM nickel-based superalloy, Inconel 625, stress-relief heat treatment leads to the growth of unwanted δ-phase precipitates on a time scale much faster than that in wrought alloys (minutes versus tens to hundreds of hours). The root cause for this behavior is the elemental segregation that results in local compositions of AM alloys outside the bounds of the allowable range set for wrought alloys. In situ small angle scattering experiments reveal that platelet-shaped δ phase precipitates grow continuously and preferentially along their lateral dimensions during stress-relief heat treatment, while the thickness dimension reaches a plateau very quickly. In situ XRD experiments reveal that nucleation and growth of δ-phase precipitates occur within 5 min during stress-relief heat treatment, indicating a low nucleation barrier and a short incubation time. An activation energy for the growth of δ phase was found to be (131.04 ± 0.69) kJ mol−1. We further demonstrate that a subsequent homogenization heat treatment can effectively homogenize the AM alloy and remove the deleterious δ phase. The combined experimental and modeling methodology in this work can be extended to elucidate the phase evolution during heat treatments in a broad range of AM materials.

Place, publisher, year, edition, pages
Acta Materialia Inc , 2018. Vol. 152, p. 200-214
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-228879DOI: 10.1016/j.actamat.2018.03.017Scopus ID: 2-s2.0-85046338379OAI: oai:DiVA.org:kth-228879DiVA, id: diva2:1211098
Note

QC 20180530

Available from: 2018-05-30 Created: 2018-05-30 Last updated: 2018-05-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Lindwall, Greta

Search in DiVA

By author/editor
Lindwall, Greta
By organisation
Materials Science and Engineering
In the same journal
Acta Materialia
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf