Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Seismic sloshing effects in lead-cooled fast reactors
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.ORCID iD: 0000-0001-5653-9206
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.ORCID iD: 0000-0003-3132-7252
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.ORCID iD: 0000-0002-0683-9136
2018 (English)In: Nuclear Engineering and Design, ISSN 0029-5493, E-ISSN 1872-759X, Vol. 332, p. 99-110Article in journal (Refereed) Published
Abstract [en]

Pool-type primary system can improve the economy of lead-cooled fast reactors. However, partially filled pool of heavy liquid metal poses safety concerns related to seismic loads. Violent sloshing during earthquake-initiated fluid-structure interaction can lead to structural failures, gas entrapment and potential core voiding. Seismic isolation systems can be used to reduce the structural stresses, but its effect on sloshing is not straightforward. This paper presents a numerical study of seismic sloshing in ELSY reactor. The purpose is to evaluate the effects of seismic isolation system on sloshing at different levels of earthquake. Sloshing is modeled using computational fluid dynamics with a volume of fluid free surface capturing model. Earthquake is simulated using synthetic seismic data produced in SILER project as a boundary condition. Simultaneous verification and validation of the numerical model using a dam break experiment is presented. The adverse resonance effect of seismic isolation system is demonstrated in terms of sloshing-induced hydrodynamic loads and gas entrapment. Effectiveness of seismic isolation system is discussed separately for design and beyond design seismic levels. Partitioning baffles are proposed as a potential mitigation measure in the design and their effect is analyzed.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 332, p. 99-110
Keywords [en]
LFR, CFD, Seismic sloshing, FSI, Gas entrapment, Seismic isolation
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-227208DOI: 10.1016/j.nucengdes.2018.03.020ISI: 000430395700010Scopus ID: 2-s2.0-85044166706OAI: oai:DiVA.org:kth-227208DiVA, id: diva2:1211341
Note

QC 20180530

Available from: 2018-05-30 Created: 2018-05-30 Last updated: 2018-05-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Jeltsov, MartiVillanueva, WalterKudinov, Pavel

Search in DiVA

By author/editor
Jeltsov, MartiVillanueva, WalterKudinov, Pavel
By organisation
Nuclear Power Safety
In the same journal
Nuclear Engineering and Design
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf