Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling the population of olfactory receptor neurons
KTH, School of Computer Science and Communication (CSC), Computational Biology, CB.
KTH, School of Computer Science and Communication (CSC), Computational Biology, CB.ORCID iD: 0000-0002-2358-7815
KTH, School of Computer Science and Communication (CSC), Computational Biology, CB.ORCID iD: 0000-0002-0550-0739
2007 (English)Manuscript (preprint) (Other academic)
Place, publisher, year, edition, pages
2007.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-7229OAI: oai:DiVA.org:kth-7229DiVA: diva2:12176
Note

QC 20101116

Available from: 2007-05-30 Created: 2007-05-30 Last updated: 2016-02-02Bibliographically approved
In thesis
1. Early Information Processing in the Vertebrate Olfactory System: A Computational Study
Open this publication in new window or tab >>Early Information Processing in the Vertebrate Olfactory System: A Computational Study
2007 (English)Licentiate thesis, comprehensive summary (Other scientific)
Abstract [en]

The olfactory system is believed to be the oldest sensory system. It developed to detect and analyse chemical information in the form of odours, and its organisation follows the same principles in almost all living animals - insects as well as mammals. Likely, the similarities are due to parallel evolution - the same type of organisation has arisen more than once. Therefore, the olfactory system is often assumed to be close to optimally designed for its tasks. Paradoxically, the workings of the olfactory system are not yet well known, although several milestone discoveries have been made during the last decades. The most well-known is probably the disovery of the olfactory receptor gene family, announced in 1991 by Linda Buck and Richard Axel. For this and subsequent work, they were awarded a Nobel Prize Award in 2004. This achievement has been of immense value for both experimentalists and theorists, and forms the basis of the current understanding of olfaction. The olfactory system has long been a focus for scientific interest, both experimental and theoretical. Ever since the field of computational neuroscience was founded, the functions of the olfactory system have been investigated through computational modelling. In this thesis, I present the basis of a biologically realistic model of the olfactory system. Our goal is to be able to represent the whole olfactory system. We are not there yet, but we have some of the necessary building blocks; a model of the input from the olfactory receptor neuron population and a model of the olfactory bulb. Taking into account the reported variability of geometrical, electrical and receptor-dependent neuronal characteristics, we have been able to model the frequency response of a population of olfactory receptor neurons. By constructing several olfactory bulb models of different size, we have shown that the size of the bulb network has an impact on its ability to process noisy information. We have also, through biochemical modelling, investigated the behaviour of the enzyme CaMKII which is known to be critical for early olfactory adaptation (suppression of constant odour stimuli).

Abstract [sv]

Luktsystemet anses allmänt vara det äldsta sensoriska systemet. Det utvecklades för att upptäcka och analysera kemisk information i form av lukter, och det är organiserat efter samma principer hos nästan alla djurarter: insekter så väl som däggdjur. Troligen beror likheterna på parallell evolution -- samma organisation har uppstått mer än en gång. Därför antas det ofta att luktsystemet är nära optimalt anpassat för sina arbetsuppgifter. Paradoxalt nog är luktsystemets arbetssätt ännu inte väl känt, även om flera banbrytande framsteg gjorts de senaste decennierna. Det mest välkända är nog upptäckten av genfamiljen av luktreceptorer, som tillkännagavs 1991 av Linda Buck och Rikard Axel. För detta och efterföljande arbete belönades de med Nobelpriset år 2004. Upptäckten har varit mycket värdefull för både experimentalister och teoretiker, och formar grunden för vår nuvarande förståelse av luktsystemet. Luktsystemet har länge varit ett fokus för vetenskapligt intresse, både experimentellt och teoretiskt. Ända sedan fältet beräkningsbiologi grundades har luktsystemet undersökts genom datormodellering. I denna avhandling presenterar jag grunden för en biologiskt realistisk modell av luktsystemet. Vårt mål är att kunna representera hela luktsystemet. Så långt har vi ännu inte nått, men vi har några av de nödvändiga byggstenarna: en modell av signalerna från populationen av luktreceptorceller, och en modell av luktbulben. Genom att ta hänsyn till nervcellernas rapporterade variationer i geometriska, elektriska och receptor-beroende karaktärsdrag har vi lyckats modellera svarsfrekvenserna från en population av luktreceptorceller. Genom att konstruera flera olika stora modeller av luktbulben har vi visat att storleken på luktbulbens cellnätverk påverkar dess förmåga att behandla brusig information. Vi har också, genom biokemisk modellering, undersökt beteendet hos enzymet CaMKII, som är kritiskt viktigt för adaptering (undertryckning av ständigt närvarande luktstimuli) i luktsystemet.

Place, publisher, year, edition, pages
Stockholm: Numerisk analys och datalogi, 2007
Series
Trita-CSC-A, ISSN 1653-5723 ; 2007:8
Keyword
olfaction, olfactory system, olfactory bulb, synchronisation, CaMKII, mathematical modelling
National Category
Computer Science
Identifiers
urn:nbn:se:kth:diva-4408 (URN)978-91-7178-696-8 (ISBN)
Presentation
2007-06-08, E2, Lindstedtsvägen 3, Stockholm, 15:00
Opponent
Supervisors
Available from: 2007-05-30 Created: 2007-05-30 Last updated: 2012-03-21

Open Access in DiVA

No full text

Authority records BETA

Hellgren Kotaleski, Jeanette

Search in DiVA

By author/editor
Sandström, MalinLansner, AndersHellgren Kotaleski, Jeanette
By organisation
Computational Biology, CB
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 81 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf