Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Novel Approach for Measuring Catalytic Activity of Planar Model Catalysts in the Polymer Electrolyte Fuel Cell Environment
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
Show others and affiliations
2006 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, Vol. 153, no 4, A724-A730 p.Article in journal (Refereed) Published
Abstract [en]

The electrochemical oxygen reduction reaction on nanostructured supported platinum electrodes is measured using a newly developed solid-state polymer electrolyte electrochemical cell. Measurements were made on three types of catalytic surfaces on glassy carbon supports: nanostructured model electrodes prepared by colloidal lithography, a thin thermally evaporated Pt film, and a pure glassy carbon surface. Measurements in nitrogen and oxygen at several different humidities were performed at 60 degrees C in a fuel-cell-like environment. Lowering humidity showed a higher Tafel slope at high potentials for oxygen reduction on the nanostructured catalyst. Good agreement between the electrochemical active area from the hydrogen adsorption peaks and the catalytic area determined from scanning electron microscopy images was found. No significant change of the electrochemically active area with humidity could be found. Double-layer capacitance and oxygen reduction currents increased with increased humidification temperatures.

Place, publisher, year, edition, pages
2006. Vol. 153, no 4, A724-A730 p.
Keyword [en]
Atmospheric humidity; Capacitance; Electrochemistry; Electrodes; Fuel cells; Nanostructured materials; Platinum; Polyelectrolytes; Scanning electron microscopy
National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-7241DOI: 10.1149/1.2170578ISI: 000235723600013Scopus ID: 2-s2.0-33644806890OAI: oai:DiVA.org:kth-7241DiVA: diva2:12194
Note

QC 20100706

Available from: 2007-05-31 Created: 2007-05-31 Last updated: 2016-12-21Bibliographically approved
In thesis
1. Evaluating Cathode Catalysts in the Polymer Electrolyte Fuel Cell
Open this publication in new window or tab >>Evaluating Cathode Catalysts in the Polymer Electrolyte Fuel Cell
2007 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

The polymer electrolyte membrane fuel cell (PEMFC) converts the chemical energy of hydrogen and oxygen (air) into usable electrical energy. At the cathode (the positive electrode), a considerable amount of platinum is generally required to catalyse the sluggish oxygen reduction reaction (ORR). This has implications regarding the cost in high-power applications, and for making a broad commercialisation of the PEMFC technology possible, it would be desirable to lower the amount of Pt used to catalyse the ORR.

In this thesis a number of techniques are described that have been developed in order to investigate catalytic activity at the cathode of the PEMFC. These methodologies resemble traditional three-electrode research in liquid electrolytes, including cyclic voltammetry in inert gas, but with the advantage of performing the experiments in the true PEMFC environment.

From the porous electrode studies it was seen that it is possible to reach mass activities close to 0.2 gPt/kW at potentials above 0.65 V at 60 ◦C, but that the mass activities may become considerably lower when raising the temperature to 80 ◦C and changing the measurement methodology regarding potential cycling limits and electrode manufacturing.

The model electrode studies rendered some interesting results regarding the ORR at the Pt/Nafion interface. Using a novel measurement setup for measuring on catalysed planar glassy carbon disks, it was seen that humidity has a considerable effect on the ORR kinetics of Pt. The Tafel slopes become steeper and the activity decreases when the humidity level of the inlet gases decreases. Since no change in the the electrochemical area of the Pt/Nafion interface could be seen, these kinetic phenomena were ascribed to a lowered Pt oxide coverage at the lower humidity level, in combination with a lower proton activity.

Using bi-layered nm-thick model electrodes deposited directly on Nafion membranes, the behaviour of TiO2 and other metal oxides in combination with Pt in the PEMFC environment was investigated. Kinetically, no intrinsic effect could be seen for the model electrodes when adding a metal oxide, but compared to porous electrodes, the surface (specific) activity of a 3 nm film of Pt deposited on Nafion seems to be higher than for a porous electrode using ∼4 nm Pt grains deposited on a carbon support. Comparing the cyclic voltammograms in N2, this higher activity could be ascribed to less Pt oxide formation, possibly due to a particle size effect.

For these bi-layered films it was also seen that TiO2 may operate as a proton-conducting electrolyte in the PEMFC.

Abstract [sv]

I polymerelektrolytbränslecellen (PEMFC) omvandlas den kemiska energin hos vätgas och syrgas (luft) direkt till användbar elektrisk energi. På katoden (den positiva elektroden) krävs betydande mängder platina för att katalysera den tröga syrereduktionsreaktionen (ORR). Detta inverkar på kostnaden för högeffektsapplikationer, och för att göra en bred kommersialisering av PEMFC-teknologin möjlig skulle det vara önskvärt att minska den Pt-mängd som används för att katalysera ORR. I denna avhandling beskrivs ett antal tekniker som utvecklats för att undersöka katalytisk aktivitet på katoden i PEMFC. Metodiken liknar traditionella treelektrodexperiment i vätskeformig elektrolyt, med cyklisk voltammetri i inert gas, men med fördelen att försöken utförs i den riktiga PEMFC-miljön. I försök med porösa elektroder visades att det är möjligt att nå massaktiviteter nära 0.2 gPt/kW för potentialer över 0.65 V vid 60 ◦C, men massaktiviteterna kan bli betydligt lägre om temperaturen höjs till 80 ◦C, och om potentialsvepgränser och elektrodentillverkningsmetod ändras. Försök med modellelektroder resulterade i intressanta resultat rörande ORR i gränsskiktet Pt/Nafion. Genom att använda en ny metodik för att mäta på katalyserade plana elektroder av vitröst kol (glassy carbon), var det möjligt att se att gasernas fuktighet har en betydande inverkan på ORR-kinetiken hos Pt. Tafellutningarna blir brantare och aktiviteten minskar när inloppsgasernas fuktighetsgrad minskar. Eftersom den elektrokemiska arean hos Pt/Nafion-gränsskiktet inte ändrades, ansågs dessa kinetiska effekter bero på en lägre täckningsgrad av Ptoxider vid lägre fuktigheter, i kombination med lägre protonaktivitet. Genom att använda Nafionmembran belagda med nm-tjocka tvåskiktsmodellelektroder undersöktes hur Pt i kombination med TiO2 och andra metalloxider verkar i PEMFC-miljön. Kinetiskt sett hade tillsatsen av metalloxider ingen inre påverkan på aktiviteten, men vid jämförelse med porösa elektroder tycks den specifika ytaktiviteten vara högre hos en 3 nm film av Pt på Nafion än för en porös elektrod baserad på ∼4 nm Pt-korn belagda på ett kolbärarmaterial. Jämför man de cykliska voltammogrammen i N2, kan den högre aktiviteten tillskrivas en lägre grad av Pt-oxidbildning, vilket i sin tur kan bero på en storlekseffekt hos Pt-partiklarna. Försöken med dessa tvåskiktselektroder visade också att TiO2 kan verka som protonledande elektrolyt i PEMFC.

Place, publisher, year, edition, pages
Stockholm: KTH, 2007. xii, 50 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2007:39
Keyword
fuel cell, humidity, model electrodes, Nafion, oxygen reduction, PEMFC, platinum, polymer electrolyte, thin film evaporation, titanium oxide, bränslecell, fuktighet, modellelektroder, Nafion, PEMFC, platina, polymerelektrolyt, syrereduktion, tunnfilmsförångning, titanoxid
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:kth:diva-4413 (URN)978-91-7178-714-9 (ISBN)
Public defence
2007-06-11, D2, Lindstedsvägn 5, Stockholm, 13:00
Opponent
Supervisors
Note
QC 20100706Available from: 2007-05-31 Created: 2007-05-31 Last updated: 2010-07-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusJournal of the Electrochemical Society

Authority records BETA

Lindbergh, Göran

Search in DiVA

By author/editor
Ekström, HenrikHanarp, PerGustavsson, MarieFridell, ErikLundblad, AndersLindbergh, Göran
By organisation
Applied Electrochemistry
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 87 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf