Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Recombination and Transport Processes in Dye-Sensitized Solar Cells Investigated under Working Conditions
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
2006 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 110, no 36, 17715-17718 p.Article in journal (Refereed) Published
Abstract [en]

The transport and recombination of electrons in dye-sensitized TiO2 solar cells were studied by analysis of the current and voltage response to a small square-wave light-intensity modulation. Solar cells were studied under working conditions by using potentiostatic and galvanostatic conditions. An increase in applied voltage, that is, from 0 V toward open-circuit voltage, was found to lead to faster electron transport at low light intensities, while it slowed transport at higher light intensities. This observation seems to be conflicting with the multiple trapping model with diffusive transport. An effective diffusion length at the maximum power point was calculated, and it was shown that it decreases with increasing light intensity.

Place, publisher, year, edition, pages
2006. Vol. 110, no 36, 17715-17718 p.
Keyword [en]
Dye-sensitized solar cells; Open-circuit voltage; Square-wave light-intensity modulation
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-7312DOI: 10.1021/jp064046bISI: 000240340600005Scopus ID: 2-s2.0-33749677248OAI: oai:DiVA.org:kth-7312DiVA: diva2:12284
Note
QC 20100708Available from: 2007-06-07 Created: 2007-06-07 Last updated: 2010-07-09Bibliographically approved
In thesis
1. Charge Transport Processes in Mesoporous Photoelectrochemical Systems
Open this publication in new window or tab >>Charge Transport Processes in Mesoporous Photoelectrochemical Systems
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

During the last decade, the dye sensitised solar cell (DSC) has attracted much attention. The technology has a potential to act as a new generation of photovoltaic device, it has also increased our knowledge within the field of photoelectrochemistry. The materials used in the DSC have been used in other technologies, such as electrochromic displays. This thesis examines how such systems can be analysed to understand their properties from their components. Both of the considered device technologies consist of a thin mesoporous semiconductor film immersed in an electrolyte. The study starts by investigating some of the fundamental properties of the mesoporous semiconductor and its interface with the electrolyte. This gives rise to the charge-voltage relationship for the devices, which is related to the chemical capacitance and electronic energy levels for the materials. In particular,special attention is given to the DSC and the properties of the charge carriers in the semiconductor. For the DSC, several techniques have been developed in order to understand the processes of transport and recombination for the charge carriers in the semiconductor film, which are vitally important for performance. In this thesis, particular focus is given to light modulation techniques and electrical analysis with impedance spectroscopy. The transportproperties show for both techniques a nonlinear behaviour, which is explained with the trapping model. The DSC solar cell is analysed in order to interpret the transport measurements for film thickness optimisation. DSC cells with new semiconductor materials, such as ZnO, were analysed with impedance measurements to provide new insights into the optimisation of the performance of the photoelectrochemical solar cell technology.

Place, publisher, year, edition, pages
Stockholm: KTH, 2009. x, 60 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2009:1
Keyword
solar cell, dye-sensitized, impedance, electron transport, mesoporous
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-9849 (URN)978-91-7415-209-8 (ISBN)
Public defence
2009-02-06, F3, KTH, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20100804Available from: 2009-01-19 Created: 2009-01-14 Last updated: 2010-08-04Bibliographically approved
2. Studies of Charge Transport Processes in Dye-sensitized Solar Cells
Open this publication in new window or tab >>Studies of Charge Transport Processes in Dye-sensitized Solar Cells
2007 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Dye-sensitized solar cells (DSCs) have attained considerable attention during the last decade because of the potential of becoming a low cost alternative to silicon based solar cells. Although efficiencies exceeding 10% in full sunlight have been presented, major improvements of the system are however limited. Electron transport is one of the processes in the cell and is of major importance for the overall performance. It is further a complex process because the transport medium is a mesoporous film and the pores are completely filled by an electrolyte with high ionic strength, resulting in electron-ion interactions. Therefore, present models describing electron transport include simplifications, which limit the practical use, in terms of improving the DSC, because the included model parameters usually have an effective nature. This thesis focuses in particular on the influence of the mesoporous film on electron transport and also on the influence of electron-ion interactions. In order to model diffusion, which is assumed to be the transport process for electrons in the DSC, Brownian motion simulations were performed and spatial restrictions, representing the influence of the mesoporous film, were introduced by using representative models for the structure. The simulations revealed that the diffusion coefficient is approximately half the value for electrons and ions in mesoporous systems. To study the influence of ions, a simulation model was constructed in where electric fields were calculated with respect to the net charge densities, resulting from the different charge carrier distributions. The simulations showed that electron transport is highly dependent on the nature of the ions, supporting an ambipolar diffusion transport model. Experimentally, it was found that the transport process is dependent on the wavelength of the incident light; we found that the extracted current was composed of two components for green light illumination, one fast and one slow. The slow component showed similar trends as the normal current. Also we found that the transport coefficient scaled linearly with film thickness for a fixed current, which questions diffusion as transport process. Other experiments, investigating various effects in the DSC, such as the effect of different cations in the electrolyte, are also presented.

Place, publisher, year, edition, pages
Stockholm: KTH, 2007. ix, 54 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2007:12
Keyword
solar cell, mesoporous, dye-sensitized, model, simulation, electron transport, trap distribution
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-4430 (URN)978-91-7178-602-9 (ISBN)
Public defence
2007-06-15, D1, KTH, Lindstedtsvägen 5, Stockholm, 14:00
Opponent
Supervisors
Note
QC 20100708Available from: 2007-06-07 Created: 2007-06-07 Last updated: 2010-07-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusJournal of Physical Chemistry B

Search in DiVA

By author/editor
Nissfolk, JarlFredin, KristoferHagfeldt, AndersBoschloo, Gerrit
By organisation
Centre of Molecular Devices, CMD
In the same journal
Journal of Physical Chemistry B
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf