Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transparent Composites Made from Tunicate Cellulose Membranes and Environmentally Friendly Polyester
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0001-8817-2031
2018 (English)In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 11, no 10, p. 1728-1735Article in journal (Refereed) Published
Abstract [en]

A series of optically transparent composites were made by using tunicate cellulose membranes, in which the naturally organized cellulose microfibrillar network structure of tunicate tunics was preserved and used as the template and a solution of glycerol and citric acid at different molar ratios was used as the matrix. Polymerization through ester bond formation occurred at elevated temperatures without any catalyst, and water was released as the only byproduct. The obtained composites had a uniform and dense structure. Thus, the produced glycerol citrate polyester improved the transparency of the tunicate cellulose membrane while the cellulose membrane provided rigidity and strength to the prepared composite. The interaction between cellulose and polyester afforded the composites high thermal stability. Additionally, the composites were optically transparent and their shape, strength, and flexibility were adjustable by varying the formulation and reaction conditions. These composites of cellulose, glycerol, and citric acid are renewable and biocompatible and have many potential applications as structural materials in packaging, flexible displays, and solar cells.

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH , 2018. Vol. 11, no 10, p. 1728-1735
Keywords [en]
carbohydrates, gels, membranes, nanostructures, polymerization
National Category
Polymer Technologies
Identifiers
URN: urn:nbn:se:kth:diva-231215DOI: 10.1002/cssc.201800627ISI: 000434216800017PubMedID: 29644799Scopus ID: 2-s2.0-85046335513OAI: oai:DiVA.org:kth-231215DiVA, id: diva2:1228683
Note

QC 20180628

Available from: 2018-06-28 Created: 2018-06-28 Last updated: 2018-06-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Zhao, YadongHenriksson, Gunnar

Search in DiVA

By author/editor
Zhao, YadongMoser, CarlHenriksson, Gunnar
By organisation
Fibre- and Polymer Technology
In the same journal
ChemSusChem
Polymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf