CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Stochastic Approximation for Monte Carlo Calculation of Steady-State Conditions in Thermal ReactorsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2006 (English)In: Nuclear science and engineering, ISSN 0029-5639, E-ISSN 1943-748X, Vol. 152, p. 274-283Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2006. Vol. 152, p. 274-283
##### Keyword [en]

ROBBINS-MONRO PROCEDURE
##### National Category

Physical Sciences
##### Identifiers

URN: urn:nbn:se:kth:diva-7363ISI: 000235833100003Scopus ID: 2-s2.0-33645138278OAI: oai:DiVA.org:kth-7363DiVA, id: diva2:12365
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt473",{id:"formSmash:j_idt473",widgetVar:"widget_formSmash_j_idt473",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt479",{id:"formSmash:j_idt479",widgetVar:"widget_formSmash_j_idt479",multiple:true});
##### Note

QC 20100709Available from: 2007-07-10 Created: 2007-07-10 Last updated: 2017-12-14Bibliographically approved
##### In thesis

A new adaptive stochastic approximation method for an efficient Monte Carlo calculation of steady-state conditions in thermal reactor cores is described The core conditions that we consider are spatial distributions of power, neutron flux, coolant density, and strongly absorbing fission products like Xe-135. These distributions relate to each other; thus, the steady-state conditions are described by a system of nonlinear equations. When a Monte Carlo method is used to evaluate the power or neutron flux, then the task turns to a nonlinear stochastic root-finding problem that is usually solved in the iterative manner by stochastic optimization methods. One of those methods is stochastic approximation where efficiency depends on a sequence of stepsize and sample size parameters. The stepsize generation is often based on the well-known Robbins-Monro algorithm; however, the efficient generation of the sample size (number of neutrons simulated at each iteration step) was not published yet. The proposed method controls both the stepsize and the sample size in an efficient way; according to the results, the method reaches the highest possible convergence rate.

1. Advanced Monte Carlo Methods in Reactor Physics, Eigenvalue and Steady State Problems$(function(){PrimeFaces.cw("OverlayPanel","overlay12366",{id:"formSmash:j_idt787:0:j_idt791",widgetVar:"overlay12366",target:"formSmash:j_idt787:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Development of New Monte Carlo Methods in Reactor Physics: Criticality, Non-Linear Steady-State and Burnup Problems$(function(){PrimeFaces.cw("OverlayPanel","overlay220577",{id:"formSmash:j_idt787:1:j_idt791",widgetVar:"overlay220577",target:"formSmash:j_idt787:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1256",{id:"formSmash:j_idt1256",widgetVar:"widget_formSmash_j_idt1256",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1309",{id:"formSmash:lower:j_idt1309",widgetVar:"widget_formSmash_lower_j_idt1309",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1310_j_idt1312",{id:"formSmash:lower:j_idt1310:j_idt1312",widgetVar:"widget_formSmash_lower_j_idt1310_j_idt1312",target:"formSmash:lower:j_idt1310:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});