Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Increasing Precision in IT Architecture Modeling using an Ontology Framework
KTH, School of Electrical Engineering and Computer Science (EECS), Network and Systems engineering. (Software Systems Architecture and Security Analysis)ORCID iD: 0000-0003-1464-6163
KTH, School of Electrical Engineering and Computer Science (EECS), Network and Systems engineering. (Software Systems Architecture and Security Analysis)ORCID iD: 0000-0003-3089-3885
RISE ICT/SICS.ORCID iD: 0000-0003-2017-7914
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Modeling is a vital part of IT architecture management. However, it is a complex and resource demanding task. Automation of IT architecture modeling aims to simplify model creation using data already available. The data collected from enterprise systems, however, often lacks context. One reason is that the automated models become less precise in terms of domain knowledge than the ones that an expert human modeler would create. The lack of domain knowledge in modeling automation can be addressed with ontologies. In this paper we introduce an ontology based framework that has been developed to complement heterogeneous data from enterprise systems for the purpose of automatic modeling. The ontology itself is stored as a graph in a graph database. The framework is able to use the captured ontology to standardize software names for merging data across multiple sources, classify software products and vulnerabilities, and to group software names and data flows to adapt the granularity level of the data used in the model. The framework is shown to improve the precision of enterprise data and help to abstract the information to the required level in a case study. Three different data sets from a small scale utility lab, from a water utility control network, and from a university IT environment are analyzed.

Keywords [en]
IT architecture modeling, Ontology framework, Automatic modeling
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Information and Communication Technology
Identifiers
URN: urn:nbn:se:kth:diva-235387OAI: oai:DiVA.org:kth-235387DiVA, id: diva2:1250732
Note

QC 20180926

Available from: 2018-09-24 Created: 2018-09-24 Last updated: 2018-09-26Bibliographically approved
In thesis
1. Improving IT Architecture Modeling Through Automation: Cyber Security Analysis of Smart Grids
Open this publication in new window or tab >>Improving IT Architecture Modeling Through Automation: Cyber Security Analysis of Smart Grids
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Contemporary organizations depend on IT to reach their goals but the organizations are constantly adapting to changing market conditions and these changes need to be reflected in the IT architecture. Modeling is often used to manage complex architectures allowing to abstract details and focus on the most important aspects. Metamodels are central to modeling and used as a mechanism for modeling different phenomena and describing evolving designs such as IT architectures. However, it can be difficult to model IT architecture especially in large organizations due to the amount and diversity of systems, software, data, et cetera. Previous studies have found problems with metamodels and the support modeling tools provide to the users. The topics mentioned by numerous authors are lacking cyber security analysis capabilities and the support for automated model creation using enterprise data. These two topics are studied in this thesis with the focus on smart grids. 

The contribution of this thesis is to offer support for IT architecture modeling processes with the following propositions that are described in four papers. The contribution includes a metamodel extension for analyzing insider threats and reachability (Paper A), a framework for automatic modeling (Paper B), a framework for improving semantic accuracy and granularity matching in automatic modeling (Paper C) and a reference model for cyber security analysis of smart grid load balancing (Paper D).

Abstract [sv]

Idag är många verksamheter beroende av IT för att nå sina mål. Organisationer anpassar sig dock ständigt till förändrade marknadsförhållanden och dessa förändringar måste återspeglas i IT-arkitekturen. Modellering används ofta för att hantera komplexa system, då det möjliggör abstraktion av detaljer och fokus på de viktigaste delarna av systemet. Metamodeller är viktiga för modellering och används som ett verktyg för att modellera fenomen för olika IT-arkitekturer. Att modellera IT-arkitekturer kan dock vara svårt, särskilt i stora organisationer med många olika system, program, data osv. Tidigare forskning har funnit problem med metamodeller och verktygsstöd. Ämnen som nämns av många författare är problemen med hotanalyskapacitet och stöd för automatiserad modelluppbyggnad från företagsdata. Dessa två ämnen studeras i denna avhandling med fokus på smarta elnät.

Bidraget i denna avhandling är att erbjuda stöd för IT-arkitekturmodelleringsprocesser med följande förslag som beskrivs i fyra papper. Bidraget innefattar en utvidgad metamodell för att analysera interoperabilitet och tillgänglighet avseende cybersäkerhet (artikel A), ett ramverk för automatisk modellering (artikel B), ett ramverk för förbättring av semantisk noggrannhet och granularitetsmatchning i automatisk modellering (artikel C) och en referensmodell för analys av cybersäkerhet vid lastbalansering av smarta elnät (artikel D).

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. 44
Series
TRITA-EECS-AVL ; 2018:63
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-235347 (URN)978-91-7729-931-8 (ISBN)
Public defence
2018-10-15, F3, Lindstedtsvägen 26, Stockholm, 15:00 (English)
Opponent
Supervisors
Note

QC 20180924

Available from: 2018-09-24 Created: 2018-09-22 Last updated: 2018-10-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Välja, MargusLagerström, RobertFranke, Ulrik

Search in DiVA

By author/editor
Välja, MargusLagerström, RobertFranke, Ulrik
By organisation
Network and Systems engineering
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 100 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf