Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The 30 Year Search for the Compact Object in SN 1987A
KTH, School of Engineering Sciences (SCI), Physics.
KTH, School of Engineering Sciences (SCI), Physics.ORCID iD: 0000-0003-0065-2933
Stockholm Univ, Dept Astron, Oskar Klein Ctr, AlbaNova, SE-10691 Stockholm, Sweden..
Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA.;Univ Virginia, 520 Edgemont Rd, Charlottesville, VA 22903 USA..
Show others and affiliations
2018 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 864, no 2, article id 174Article in journal (Refereed) Published
Abstract [en]

Despite more than 30 years of searching, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy (0.1 x 10(-26) erg s(-1) cm(-2) Hz(-1)) at 213 GHz, 1 L-circle dot (6 x 10(-29) erg s(-1) cm(-2) Hz(-1)) in the optical if our line of sight is free of ejecta dust, and 10(36) erg s(-1) (2 x 10(-30) erg s(-1) cm(-2) Hz(-1) ) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a more realistic ejecta absorption model based on three-dimensional neutrino-driven SN explosion models. The allowed bolometric luminosity of the compact object is 22 L-circle dot if our line of sight is free of ejecta dust, or 138L(circle dot) if dust-obscured. Depending on assumptions, these values limit the effective temperature of a neutron star (NS) to <4-8 MK and do not exclude models, which typically are in the range 3-4 MK. For the simplest accretion model, the accretion rate for an efficiency 77 is limited to <10(-11) eta(-1) M-circle dot yr(-1), which excludes most predictions. For pulsar activity modeled by a rotating magnetic dipole in vacuum, the limit on the magnetic field strength (B) for a given spin period (P) is B less than or similar to 10(14) P-2 G s(-2), which firmly excludes pulsars comparable to the Crab. By combining information about radiation reprocessing and geometry, we infer that the compact object is a dust-obscured thermally emitting NS, which may appear as a region of higher-temperature ejecta dust emission.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2018. Vol. 864, no 2, article id 174
Keywords [en]
stars: black holes, stars: neutron, supernovae: individual (SN 1987A)
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-235442DOI: 10.3847/1538-4357/aad739ISI: 000444645600011Scopus ID: 2-s2.0-85053411220OAI: oai:DiVA.org:kth-235442DiVA, id: diva2:1251508
Funder
Knut and Alice Wallenberg FoundationSwedish Research CouncilEU, European Research Council, 341157-COCO2CASA
Note

QC 20180927

Available from: 2018-09-27 Created: 2018-09-27 Last updated: 2019-01-21Bibliographically approved
In thesis
1. Core-collapse Supernovae: Theory vs. Observations
Open this publication in new window or tab >>Core-collapse Supernovae: Theory vs. Observations
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

A core-collapse supernova (CCSN) is an astronomical explosion that indicates the death of a massive star. The iron core of the star collapses into either a neutron star or a black hole while the rest of the material is expelled at high velocities. Supernovae (SNe) are important for the chemical evolution of the Universe because a large fraction of the heavier elements such as oxygen, silicon, and iron are liberated by CCSN explosions. Another important role of SNe is that the ejected material seed the next generation of stars and planets. From observations, it is clear that a large fraction of all massive stars undergoes SN explosions, but describing how SNe explode has remained a challenge for many decades.

The attached papers focus on comparing theoretical predictions with observations, primarily observations of SN 1987A. The compact remnant in SN 1987A has not yet been detected and we have investigated how a compact object can remain hidden in the ejecta (Paper I and II). Because of the high opacity of the metal-rich ejecta, the direct X-ray observations are not very constraining even for potentially favorable viewing angles. However, the combined observations still strongly constrain fallback accretion and put a limit on possible pulsar wind activity. The thermal surface emission from a neutron star is consistent with the observations if our line of sight is dust-obscured, and only marginally consistent otherwise. Future observations provide promising opportunities for detecting the compact object.

We have also compared the most recent three-dimensional neutrino-driven SN models that are based on explosion simulations with early X-ray and gamma-ray observations of SN 1987A (Paper III). The models that are designed to match SN 1987A fit the data well, but not all tensions can be explained by choosing a suitable viewing angle. More generally, the asymmetries do not affect the early emission qualitatively and different progenitors of the same class result in similar early emission. We also find that the progenitor metallicity is important for the low-energy X-ray cuto↵. Current instruments should be able to detect this emission from SNe at distances of 3–10 Mpc, which correspond to distances slightly beyond the Local Group.

Abstract [sv]

En kärnkollapssupernova (CCSN) är en astronomisk explosion som indikerar slutet av en massiv stjärnas liv. Stjärnans järnkärna kollapsar antingen till en neutronstjärna eller ett svart hål medan resten av materialet slungas iväg med höga hastigheter. Supernovor (SNe) är viktiga för Universums kemiska utveckling eftersom en stor andel av alla tyngre element såsom syre, kisel, och järn frigörs i CCSN-explosioner. Ytterligare en viktig roll för SNe är att nästa generations stjärnor och planeter bildas av det utkastade materialet. Från observationer är det tydligt att en stor andel av alla massiva stjärnor genomgår SN-explosioner, men att förklara hur SNe exploderar har kvarstått som en utmaning under flera decennier.

De bifogade artiklarna fokuserar på att jämföra teoretiska förutsägelser med observationer, primärt observationer av SN 1987A. Det kompakta objektet i SN 1987A har ännu inte blivit detekterat och vi har undersökt hur ett kompakt objekt kan förbli dolt i ejektat (Paper I och II). De direkta röntgenobservationerna är inte så begränsande även längs potentiellt gynsamma siktlinjer på grund av det metallrika ejektats höga opacitet. Däremot begränsar kombinationen av alla observationer starkt ackretion och sätter en gräns för möjlig pulsarvindsaktivitet. Den termiska ytstrålningen från en neutronstjärna är konsistent med observationerna om vår siktlinje är skymd av stoft, och bara marginellt konsistent annars. Framtida observationer utgör lovande möjligheter för att detektera det kompakta objektet.

Vi har också jämfört de senaste tredimensionella neutrinodrivna SN-modellerna, som är baserade på explosionssimuleringar, med tidiga röntgen- och gamma-observationer av SN 1987A (Paper III). SN 1987A-modellerna passar datan väl, men alla diskrepanser kan inte förklaras av ett lämpligt val av observationsvinkel. Generellt så påverkar inte asymmetrierna den tidiga emissionen kvalitativt och olika föregångarstjärnor av samma kategori resulterar i likartad strålning. Vi finner också att föregångarstjärnans metallisitet är viktig för egenskaperna av lågenergiröntgenstrålningen. Befintliga instrument borde kunna detektera denna emission på 3--10 Mpc, vilket motsvarar avstånd lite bortom den Lokala galaxhopen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 62
Series
TRITA-SCI-FOU ; 2019:01
Keywords
Astrophysics, Supernovae
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-241431 (URN)978-91-7873-062-9 (ISBN)
Presentation
2019-02-14, FB52, AlbaNova Universitetscentrum, Roslagstullsbacken 21, Stockholm, 15:00 (English)
Opponent
Supervisors
Note

Examintor: Professor Mark PearceQC 20190121

Available from: 2019-01-21 Created: 2019-01-21 Last updated: 2019-09-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Alp, DennisLarsson, Josefin

Search in DiVA

By author/editor
Alp, DennisLarsson, Josefin
By organisation
Physics
In the same journal
Astrophysical Journal
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf