References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Stable reduction of curves and tame ramificationPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)Doctoral thesis, comprehensive summary (Other scientific)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Matematik , 2007. , 11, 19, 69 p.
##### Series

Trita-MAT, ISSN 1401-2286 ; 07:09
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-4494ISBN: 978-91-7178-764-4OAI: oai:DiVA.org:kth-4494DiVA: diva2:12534
##### Public defence

2007-10-12, Sal F3, KTH, Lindstedtsvägen 26, Stockholm, 13:00
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
##### Note

QC 20100712Available from: 2007-09-21 Created: 2007-09-21 Last updated: 2010-08-26Bibliographically approved
##### List of papers

This thesis treats various aspects of stable reduction of curves, and consists of two separate papers. In Paper I of this thesis, we study stable reduction of curves in the case where a tamely ramified base extension is sufficient. If X is a smooth curve defined over the fraction field of a strictly henselian discrete valuation ring, there is a criterion, due to T. Saito, that describes precisely, in terms of the geometry of the minimal model with strict normal crossings of X, when a tamely ramified extension suffices in order for X to obtain stable reduction. For such curves we construct an explicit extension that realizes the stable reduction, and we furthermore show that this extension is minimal. We also obtain a new proof of Saito's criterion, avoiding the use of adic cohomology and vanishing cycles. In Paper II, we study group actions on regular models of curves. If X is a smooth curve defined over the fraction field K of a complete discrete valuation ring R, every tamely ramified field extension K0=K with Galois group G induces a G-action on the extension XK0 of X to K0. We study the extension of this G-action to certain regular models of XK0 . In particular, we are interested in the induced action on the cohomology groups of the structure sheaf of the special fiber of such a regular model. We obtain a formula for the Brauer trace of the endomorphism induced by a group element on the alternating sum of the cohomology groups. Inspired by this global study, we also consider similar group actions on the cohomology of the structure sheaf of the exceptional locus of a tame cyclic quotient singularity, and obtain an explicit polynomial formula for the Brauer trace of the endomorphism induced by a group element on the alternating sum of the cohomology groups. We apply these results to study a natural filtration of the special fiber of the Néronmodel of the Jacobian of X by closed, unipotent subgroup schemes. We show that the jumps in this filtration only depend on the fiber type of the special fiber of the minimal regular model with strict normal crossings for X over Spec(R), and in particular are independent of the residue characteristic. Furthermore, we obtain information about where these jumps can occur. We also compute the actual jumps for each of the finitely many possible fiber types for curves of genus 1 and 2.

1. Stable reduction of curves and tame ramification$(function(){PrimeFaces.cw("OverlayPanel","overlay345640",{id:"formSmash:j_idt423:0:j_idt427",widgetVar:"overlay345640",target:"formSmash:j_idt423:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Galois actions on models of curves$(function(){PrimeFaces.cw("OverlayPanel","overlay345643",{id:"formSmash:j_idt423:1:j_idt427",widgetVar:"overlay345643",target:"formSmash:j_idt423:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});