Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simultaneous enhancement in charge separation and onset potential for water oxidation in a BiVO4 photoanode by W-Ti codoping
Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore..
Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore.;Northwest Univ, Sch Chem Engn, Xian 710069, Shaanxi, Peoples R China..
Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore..
Uppsala Univ, Mat Theory Div, Dept Phys & Astron, S-75120 Uppsala, Sweden..
Show others and affiliations
2018 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 35, p. 16965-16974Article in journal (Refereed) Published
Abstract [en]

Efficient charge separation of photo-generated electrons and holes is critical to achieve high solar to hydrogen conversion efficiency in photoelectrochemical (PEC) water splitting. N-type doping is generally used to improve the conductivity by increasing the majority carrier density and enhance the charge separation in the photoanode. However, minority carrier transport is also very important in the process of charge separation, especially in materials that possess inadequate minority carrier mobility. Herein, we take a BiVO4 PEC water splitting cell as an example to demonstrate how to analyze the limiting factor and to formulate the corresponding solutions to improve the hole mobility. The benefits and problems caused by n-type doping (W-doping here) of BiVO4 are analyzed. Codoping with Ti further enhances the charge separation by improving the hole transport and leads to a cathodic shift of the photocurrent onset potential. A high charge separation efficiency (79% at 1.23 V-RHE) in a compact BiVO4 photoanode has been achieved without any nanostructure formation. Theoretical results show that W-Ti codoping has decreased the hole polaron hopping activation energy by 11.5% compared with mono-W doping, and this has resulted in a hole mobility increase by 29%. The calculated adsorption energy and reaction Gibbs free energies indicate that the Ti site is energetically more favorable for water splitting. Moreover, the Ti site possesses a lower overpotential in the W-Ti codoped sample compared with the mono-W doped sample. The current study indicates that in order to improve the solar energy conversion efficiency, there should be a balanced charge transport of both majority and minority charge carriers. This can be achieved by simply choosing appropriate codoping elements.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2018. Vol. 6, no 35, p. 16965-16974
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-235878DOI: 10.1039/c8ta05491fISI: 000445218000025Scopus ID: 2-s2.0-85053496394OAI: oai:DiVA.org:kth-235878DiVA, id: diva2:1254347
Funder
Swedish Research CouncilSwedish Energy Agency
Note

QC 20181009

QC 20181017

Available from: 2018-10-09 Created: 2018-10-09 Last updated: 2020-01-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Ahuja, Rajeev

Search in DiVA

By author/editor
Ahuja, Rajeev
By organisation
Applied Material Physics
In the same journal
Journal of Materials Chemistry A
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf