Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Growth of high quality epitaxial Si1-x-yGexCy layers by using chemical vapor deposition
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
Department of Physics, Thin Film Physics Division, Linköpings Universitet.
Department of Physics, Thin Film Physics Division, Linköpings Universitet.
Show others and affiliations
2004 (English)In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Applied Surface Science, Vol. 224, no 1-4, 46-50 p.Article in journal (Refereed) Published
Abstract [en]

The epitaxial quality of non-selective and selective deposition of Si1-x-yGexCy (0 less than or equal to x less than or equal to 0.30, 0 less than or equal to y less than or equal to 0.02) layers has been optimized by using high-resolution reciprocal lattice mapping (HRRLM). The main goal was to incorporate a high amount of substitutional carbon atoms in Si or Si1-xGex matrix without creating defects. The carbon incorporation behavior was explained by chemical and kinetic effects of the reactant gases during epitaxial process. Although high quality epitaxial Si1-yCy layers can be deposited, lower electron mobility compared to Si layers was observed.

Place, publisher, year, edition, pages
2004. Vol. 224, no 1-4, 46-50 p.
Keyword [en]
Chemical vapor deposition; Epitaxy; High-resolution reciprocal lattice mapping; SiGeC alloys
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-7503DOI: 10.1016/j.apsusc.2003.08.026ISI: 000189273900009Scopus ID: 2-s2.0-1142280329OAI: oai:DiVA.org:kth-7503DiVA: diva2:12549
Note
QC 20100715. Konferens: 1st International SiGe Technology and Device Meeting (ISTDM), Nagoya Univ Symposion, Nagoya, Japan, 2003.Available from: 2007-09-26 Created: 2007-09-26 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Integration of epitaxial SiGe(C) layers in advanced CMOS devices
Open this publication in new window or tab >>Integration of epitaxial SiGe(C) layers in advanced CMOS devices
2007 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Heteroepitaxial SiGe(C) layers have attracted immense attention as a material for performance boost in state of the art electronic devices during recent years. Alloying silicon with germanium and carbon add exclusive opportunities for strain and bandgap engineering. This work presents details of epitaxial growth using chemical vapor deposition (CVD), material characterization and integration of SiGeC layers in MOS devices.

Non-selective and selective epitaxial growth of Si1-x-yGexCy (0≤x≤0.30, 0≤y≤0.02) layers have been performed and optimized aimed for various metal oxide semiconductor field effect transistor (MOSFET) applications. A comprehensive experimental study was performed to investigate the growth of SiGeC layers. The incorporation of C into the SiGe matrix was shown to be strongly sensitive to the growth parameters. As a consequence, a much smaller epitaxial process window compared to SiGe epitaxy was obtained.

Incorporation of high boron concentrations (up to 1×1021 atoms/cm3) in SiGe layers aimed for recessed and/or elevated source/drain (S/D) junctions in pMOSFETs was also studied. HCl was used as Si etchant in the CVD reactor to create the recesses which was followed (in a single run) by selective epitaxy of B-doped SiGe.

The issue of pattern dependency behavior of selective epitaxial growth was studied in detail. It was shown that a complete removal of pattern dependency in selective SiGe growth using reduced pressure CVD is not likely. However, it was shown that the pattern dependency can be predicted since it is highly dependent on the local Si coverage of the substrate. The pattern dependency was most sensitive for Si coverage in the range 1-10%. In this range drastic changes in growth rate and composition was observed. The pattern dependency was explained by gas depletion inside the low velocity boundary layer.

Ni silicide is commonly used to reduce access resistance in S/D and gate areas of MOSFET devices. Therefore, the effect of carbon and germanium on the formation of NiSiGe(C) was studied. An improved thermal stability of Ni silicide was obtained when C is present in the SiGe layer.

Integration of SiGe(C) layers in various MOSFET devices was performed. In order to perform a relevant device research the dimensions of the investigated devices have to be in-line with the current technology nodes. A robust spacer gate technology was developed which enabled stable processing of transistors with gate lengths down to 45 nm.

SiGe(C) channels in ultra thin body (UTB) silicon on insulator (SOI) MOSFETs, with excellent performance down to 100 nm gate length was demonstrated. The integration of C in the channel of a MOSFET is interesting for future generations of ultra scaled devices where issues such as short channel effects (SCE), temperature budget, dopant diffusion and mobility will be extremely critical. A clear performance enhancement was obtained for both SiGe and SiGeC channels, which point out the potential of SiGe or SiGeC materials for UTB SOI devices.

Biaxially strained-Si (sSi) on SiGe virtual substrates (VS) as mobility boosters in nMOSFETs with gate length down to 80 nm was demonstrated. This concept was thoroughly investigated in terms of performance and leakage of the devices. In-situ doping of the relaxed SiGe was shown to be superior over implantation to suppress the junction leakage. A high channel doping could effectively suppress the source to drain leakage.

Place, publisher, year, edition, pages
Stockholm: KTH, 2007. xviii, 65 p.
Series
TRITA-ICT/MAP, 2007:7
Keyword
Silicon Germanium Carbon (SiGeC), Chemical Vapor Deposition (CVD), Epitaxy, Pattern Dependency, MOSFET, Mobility, Spacer Gate Technology
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-4498 (URN)
Public defence
2007-10-12, N2, Electrum 3, Isafjordsgatan 28, Kista, 10:00
Opponent
Supervisors
Note

QC 20100715

Available from: 2007-09-26 Created: 2007-09-26 Last updated: 2016-02-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusScienceDirect

Search in DiVA

By author/editor
Hållstedt, JuliusSuvar, ErdalWang, Yong-BinRadamson, Henry H.
By organisation
Microelectronics and Information Technology, IMIT
In the same journal
Applied Surface Science
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 188 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf