Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On tradeoffs between treatment time and plan quality of volumetric-modulated arc therapy with sliding-window delivery
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory.
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory.ORCID iD: 0000-0002-6252-7815
(English)In: Article in journal (Other academic) Submitted
Abstract [en]

The purpose of this study is to give an exact formulation of optimization of volumetric-modulated arc therapy (VMAT) with sliding-window delivery, and to investigate the plan quality effects of decreasing the number of slidingwindow sweeps made on the 360-degree arc for a faster VMAT treatment. In light of the exact formulation, we interpret an algorithm previously suggested in the literature as a heuristic method for solving this optimization problem. By first making a generalization, we suggest a modification of this algorithm for better handling of plans with fewer sweeps. In a numerical study involving one prostate and one lung case, plans with varying treatment times and number of sweeps are generated. It is observed that, as the treatment time restrictions become tighter, fewer sweeps may lead to better plan quality. Performance of the original and the modified version of the algorithm is evaluated in parallel. Applying the modified version results in better objective function values and less dose discrepancies between optimized and accurate dose, and the advantages are pronounced with decreasing number of sweeps.

Keywords [en]
VMAT, sliding window, convex optimization, heuristics
National Category
Computational Mathematics
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-237241OAI: oai:DiVA.org:kth-237241DiVA, id: diva2:1258278
Note

QC 20181204

Available from: 2018-10-24 Created: 2018-10-24 Last updated: 2018-12-04Bibliographically approved
In thesis
1. Automated radiation therapy treatment planning by increased accuracy of optimization tools
Open this publication in new window or tab >>Automated radiation therapy treatment planning by increased accuracy of optimization tools
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Every radiation therapy treatment is preceded by a treatment planning phase. In this phase, a treatment plan that specifies exactly how to irradiate the patient is designed by the treatment planner. Since the introduction of intensity-modulated radiation therapy into clinical practice in the 1990's, treatment planning involves, and requires, the use of advanced optimization tools due to the largely increased degrees of freedom in treatment specifications compared to earlier radiation therapy techniques.

The aim of treatment planning is to create a plan that results in the, in some sense, best treatment---a treatment that at the same time reflects the patient-specific clinical goals, achieves the best possible quality, and adheres to other possible preferences of the oncologist or of the clinic. Despite dedicated treatment planning systems available with advanced optimization tools, treatment planning is often referred to as a complicated process involving many iterations with successively adjusted parameters. Over the years, a request has emerged from the clinical and treatment planners' side to make treatment planning less time-consuming and more straightforward, and the methods subsequently developed as a response have come to be referred to as methods for automated treatment planning.

In this thesis, a framework for automated treatment planning is proposed and its potential and flexibility investigated. The focus is placed on increasing the accuracy of the optimization tools, aiming at achieving a less complicated treatment planning process that is driven by intuition rather than, as currently, trial and error. The suggested framework is contrasted to a class of methods dominating in the literature, which applies a more classical view of automation to treatment planning and strives towards reducing any type of human interaction. To increase the accuracy of the optimization tools, the underlying so-called objective functions are reformulated to better correlate with measures of treatment plan quality while possessing mathematical properties favorable for optimization. An important step is to show that the suggested framework not only is theoretically desirable, but also useful in practice. An interior-point method is therefore tailored to the specific structure of the novel optimization formulation, and is applied throughout the thesis, to demonstrate tractability. Numerical studies support the idea of the suggested framework equipping the treatment planner with more accurate and thereby less complicated tools to more straightforwardly handle the intrinsically complex process that constitutes treatment planning. 

Abstract [sv]

Varje strålbehandling föregås av en dosplaneringsfas. Under dosplaneringsfasen skapas den strålbehandlingsplan som exakt beskriver hur strålbehandlingen ska genomföras. Sedan 1990-talet och den så kallade intensitetsmodulerade strålbehandlingens inträde i klinisk praxis har dosplanering kommit att betyda och rent av kräva användande av avancerade optimeringsverktyg -- en konsekvens av den kraftigt ökade mängden frihetsgrader jämfört med tidigare strålbehandlingstekniker.

Det övergripande målet med dosplanering är att skapa en plan som i någon mening ger den bästa strålbehandlingen. En sådan behandling ska i synnerhet spegla de kliniska mål som satts upp för den enskilda patienten, i allmänhet uppnå bästa möjliga kvalitet samt förhålla sig till eventuella övriga önskemål från onkologen eller kliniken. Utbudet av dosplaneringssystem med avancerade optimeringsverktyg är stort och användandet utbrett, men trots detta beskrivs ofta dosplanering som en komplicerad process där finjustering av parametrar utgör en väsentlig del. Därför har efterfrågan på hjälpmedel för mindre tidskrävande och mer rättfram dosplanering under det senaste årtiondet vuxit fram. De metoder som utvecklats som svar benämns som metoder för automatiserad dosplanering.

I det här arbetet föreslås och utvärderas ett ramverk för automatiserad dosplanering. Fokus har lagts på optimeringsverktygen och att förbättra noggrannheten i dessa, för att därigenom skapa förutsättningar för mindre komplicerad dosplanering där intuition snarare än ett tidskrävande experimenterande driver processen framåt. Ramverket som här föreslås ställs i kontrast till en annan, dominerande klass av föreslagna metoder för automatiserad dosplanering som bygger på en mer klassisk syn på automatisering, det vill säga, som strävar efter att minska människa-datorinteraktion i allmänhet. Förbättring av optimeringsverktygens noggrannhet uppnås genom att omformulera de bakomliggande så kallade målfunktionerna till alternativ som bättre korrelerar med givna kvalitetsmått och som samtidigt har matematiska egenskaper som är önskvärda vid optimering. Ett viktigt steg är dock att visa att det föreslagna ramverket inte bara är teoretiskt lämpligt, utan att det också är praktiskt hanterbart ur beräkningssynpunkt. En inrepunktsmetod anpassas till den specifika strukturen på det nya, storskaliga optimeringsproblemet för att visa just detta. Fallstudier stödjer idén om att det föreslagna ramverket ger mer noggranna och därmed lätthanterliga optimeringsverktyg, med vilka dosplaneringens ofrånkomliga komplexitet kan hanteras på ett mer effektivt sätt. 

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2018
Series
TRITA-SCI-FOU ; 2018:43
Keywords
Optimization, intensity-modulated radiation therapy, radiation therapy treatment planning, automated radiation therapy treatment planning, interior-point methods, Optimering, intensitetsmodulerad strålbehandling, dosplanering, automatiserad dosplanering, inrepunktsmetoder
National Category
Computational Mathematics
Research subject
Mathematics
Identifiers
urn:nbn:se:kth:diva-237243 (URN)978-91-7729-943-1 (ISBN)
Public defence
2018-11-23, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20181025

Available from: 2018-10-25 Created: 2018-10-24 Last updated: 2018-10-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

arXiv:1810.08610 [physics.med-ph]

Authority records BETA

Engberg, LovisaForsgren, Anders

Search in DiVA

By author/editor
Engberg, LovisaForsgren, Anders
By organisation
Optimization and Systems Theory
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf