Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quantifying Size Exclusion by Diffusion NMR: A Versatile Method to Measure Pore Access and Pore Size
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. GE Healthcare Biosci AB, Bjorkgatan 31, SE-75184 Uppsala, Sweden..
GE Healthcare Biosci AB, Bjorkgatan 31, SE-75184 Uppsala, Sweden..
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. GE Healthcare Biosci AB, Bjorkgatan 31, SE-75184 Uppsala, Sweden..ORCID iD: 0000-0002-0231-3970
2018 (English)In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 90, no 19, p. 11431-11438Article in journal (Refereed) Published
Abstract [en]

Size-exclusion quantification NMR spectroscopy (SEQNMR) is introduced for measuring equilibrium distribution coefficients, K-eq, in porous media. The porous medium is equilibrated with a polydisperse polymer solution. The original bulk polymer solution and the polymer solution after equilibration but in the absence of the porous medium are analyzed by NMR diffusion experiments. The joint evaluation of the two diffusion attenuation curves under suitable constraints provides the extent by which polymer fractions of particular size were depleted from the solution by pore access. This procedure yields K-eq versus polymer probe size, the selectivity curve that in turn can provide the pore size and its distribution. Simulations probe the performance of the method that is demonstrated experimentally in chromatographic media using dextran polymers. SEQ-NMR and inverse size- exclusion chromatography (ISEC) yield selectivity curves that virtually coincide. Crucial advantages with SEQ-NMR, such as versatility with regard to both the polymer used and porous system explored, high speed, potential for automation, and small required sample volume, are discussed.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018. Vol. 90, no 19, p. 11431-11438
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-237102DOI: 10.1021/acs.analchem.8b02474ISI: 000446542600038PubMedID: 30148342Scopus ID: 2-s2.0-85053359929OAI: oai:DiVA.org:kth-237102DiVA, id: diva2:1259501
Note

QC 20181030

Available from: 2018-10-30 Created: 2018-10-30 Last updated: 2018-10-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Furo, Istvan

Search in DiVA

By author/editor
Elwinger, FredrikFuro, Istvan
By organisation
Applied Physical Chemistry
In the same journal
Analytical Chemistry
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 294 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf