Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Catalytic aftertreatment systems for trucks fueled by biofuels - Aspects on the impact of fuel quality on catalyst deactivation
KTH.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Process Technology.
Germany.
Germany.
Show others and affiliations
2018 (English)In: Catalysis:: Volume 30, Royal Society of Chemistry, 2018, p. 64-145Chapter in book (Refereed)
Abstract [en]

The issue of sustainable energy supply is a global problem for pursuing future endeavours in the energy area. In countries such as China and India there is a tremendous growth at the moment, which is envisaged by an ever growing demand for vehicles. Hence, one of the grand challenges of society is to meet the demands for sustainable and environmentally-friendly technologies in the transport sector. One way to tackle the problem of growing concentrations of carbon dioxide, which is believed to contribute to global warming, is the use of biofuels. It is becoming more and more evident that global warming is partly due to increasing anthropogenic carbon dioxide emissions. An important contribution to these emissions is the use of fossil fuels in the transport sector. Hence, more efficient engines and an increased use of biofuels would be a step in the right direction. Although new propulsion systems are emerging, such as hybrid power-trains and fuel cell systems, analysis shows that combustion systems with excess oxygen, such as the diesel engine, will be the most important engine concept for the next 20 years. In this paper we will identify the specific challenges related to the production and use of biofuels in heavy-duty trucks and how they influence the catalytic units in the emission after-treatment system in the truck. Biofuels, such as biodiesel, contain potential poisons for the vehicle exhaust after-treatment, such as potassium, sodium, magnesium, phosphorus, zinc, sulfur and other compounds.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2018. p. 64-145
Series
Catalysis, ISSN 0140-0568, E-ISSN 1465-1920 ; 30
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:kth:diva-236380DOI: 10.1039/9781788013048-00064Scopus ID: 2-s2.0-85049314296ISBN: 9781788011518 (print)ISBN: 978-1-78801-304-8 (electronic)ISBN: 978-1-78801-476-2 (electronic)OAI: oai:DiVA.org:kth-236380DiVA, id: diva2:1260772
Note

QC 20181105

Available from: 2018-11-05 Created: 2018-11-05 Last updated: 2020-02-04Bibliographically approved
In thesis
1. Deactivation of emission control catalysts for heavy-duty vehicles: Impact of biofuel and lube oil-derived contaminants
Open this publication in new window or tab >>Deactivation of emission control catalysts for heavy-duty vehicles: Impact of biofuel and lube oil-derived contaminants
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Catalytic emission control is used to reduce the negative impact of pollutants from diesel exhausts on our health and on the environment. For a heavy-duty truck, such a system consists of a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), a selective catalytic reduction (SCR) catalyst, and an ammonia slip catalyst (ASC). Due to greenhouse-gas induced global warming, it is necessary to decrease the emissions of such gases. Two strategies for this reduction are: 1) to produce engines that are more fuel efficient, 2) to use sustainably produced renewable fuels such as biodiesel and HVO. However, both these strategies may pose additional challenges for the emission control system: a colder exhaust due to the higher fuel-efficiency requires the use of highly active catalysts; catalyst deactivation related to impurities in biofuels, which requires very robust catalysts.   The objective of this thesis was to study the impact of biofuel as well as lubrication oil-related contaminants on the performance of emission control catalysts (DOC and SCR catalysts) for heavy-duty diesel engines. The main focus has been on the low-temperature performance of V2O5-WO3/TiO2 (VWTi) and Cu-SSZ-13 SCR catalysts.    Results from the project have shown that both Cu-SSZ-13 and VWTi catalysts capture and can be deactivated by phosphorus (P), while only the Cu-SSZ-13 is deactivated by sulfur (S). The degree of the P-related deactivation depends on the concentration in the catalyst, which depends on content of P in the exhaust and the exposure time, as well as the type of catalyst. S-deactivation of Cu-SSZ-13 is observed at low temperatures, where un-poisoned Cu-SSZ-13 are significantly more active than VWTi catalysts. As a contrast, the VWTi-performance can even be improved by sulfur; but alkali metals are severe poisons to VWTi catalysts. Partial performance-recovery of S-poisoned Cu-SSZ-13 can be obtained by exposing it to sulfur-free exhausts at elevated temperatures. The use of an upstream DOC, providing fast SCR conditions to the SCR catalyst, considerably improves the low-temperature performance of the VWTi, as well as sulfur-poisoned Cu-SSZ-13 catalysts. An upstream DOC also protects the SCR catalysts from phosphorus deactivation, as it can trap large amounts of P. However, if too much phosphorus is captured by the DOC, severe deactivation of this catalyst results, which lowers the overall performance of the exhaust treatment system.  Insights from this project will guide the development of robust exhaust treatment systems for various applications. Additionally, it could aid in developing more durable emission control catalysts.

Abstract [sv]

Katalytisk avgasrening används för att minska de negativa hälso- och miljöeffekterna av dieselavgaser. För tunga lastbilar består detta avgasreningssystem av flera komponenter, dieseloxidationskatalysator (DOC), partikelfilter, SCR-katalysator och ammoniaköverskottskatalysator. I och med de klimatnegativa effekterna av växthusgaser, inkl. koldioxid, måste även emissionerna av dessa från tunga fordon minska. Två sätt att uppnå detta är att 1) producera mer bränsleeffektiva motorer, 2) använda förnybara bränslen såsom biodiesel och hydrerad växtolja (HVO). Båda dessa strategier kan dock medföra tuffa utmaningar för efterbehandlingssystemet – kallare avgaser respektive katalysatordeaktivering relaterad till kontamineringsämnen i biobränslena. Detta kräver att katalysatorerna är både aktiva och tåliga.  Syftet med detta doktorandprojekt har varit att studera effekten av biobränsle- och motoroljerelaterade kontamineringsämnens påverkan på avgasreningskatalysatorer för tunga dieselmotorer.  Huvudfokuset har varit påverkan på lågtemperaturegenskaperna hos två olika typer av SCR-katalysatorer, V2O5-WO3/TiO2 (VWTi) och Cu-SSZ. Resultat från projektet har visat att fosfor kan ackumuleras i både VWTi och Cu-SSZ-13 och deaktivera dessa, medan svavel endast deaktiverar Cu-SSZ-13. Denna deaktivering syns vid låga temperaturer där Cu-SSZ-13 annars har en betydligt bättre prestanda än VWTi. Prestandan för svavelförgiftad Cu-zeolit kan delvis fås tillbaka genom att öka temperaturen i avgaserna i svavelfri miljö. Närvaro av ammoniak i avgasen underlättar regenereringen. VWTi-katalysatorn är däremot inte känslig för svavel utan får snarare en något förbättrad prestanda. Däremot är alkalimetaller ett starkt gift för VWTi.  En uppströms DOC kan väsentligt förbättra lågtemperaturprestandan för VWTi och för svavelförgiftad Cu-SSZ-13 genom att förse dessa med NO2 så att snabb SCR kan uppnås. DOCn kan också skydda SCR-katalysatorer från fosforförgiftning genom att själv fånga upp fosfor. För mycket fosfor på DOCn resulterar dock i förgiftning även av denna, vilket påverkar resten av avgasbehandlingssystemet negativt. Resultaten från detta projekt kan användas för att utveckla robusta avgasbehandlingssystem för olika typer av tillämpningar, och kan bidra till utvecklandet av mer tåliga katalysatorer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. p. 121
Series
TRITA-CBH-FOU ; 2020:10
Keywords
NH3-SCR, Cu-SSZ-13, V2O5-WO3/TiO2, catalyst deactivation, diesel oxidation catalyst, sulfur, phosphorus, biodiesel, heavy-duty, emission control, regeneration, alkali metals, NH3-SCR, Cu-SSZ-13, V2O5-WO3/TiO2, katalysatordeaktivering, dieseloxidationskatalysator, svavel, fosfor, biodiesel, tunga dieselmotorer, avgasrening, regenerering, alkalimetaller
National Category
Chemical Process Engineering Other Chemistry Topics Materials Chemistry
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-267206 (URN)978-91-7873-437-5 (ISBN)
Public defence
2020-02-28, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2020-02-04

Available from: 2020-02-04 Created: 2020-02-04 Last updated: 2020-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Granestrand, JonasDahlin, Sandra

Search in DiVA

By author/editor
Granestrand, JonasDahlin, Sandra
By organisation
KTHProcess Technology
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 330 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf