Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Antibacterial evaluation of CNF/PVAm multilayer modified cellulose fiber and cellulose model surface
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0003-3858-8324
2018 (English)In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 33, no 3, p. 385-396Article in journal (Refereed) Published
Abstract [en]

Earlier studies have shown that 3-layer-modified cellulose fibers with poly(acrylic acid) (PAA) as the middle layer between two cationic polyelectrolyte polyvinylamine (PVAm) layers have strong antibacterial efficacy in terms of both bacteria adsorption and bacterial growth inhibition. In the present work, the fossil-based PAA middle layer was replaced by sustainable wood-based cellulose nano-fibrils (CNF), i. e., the fibers were modified by a 3-layer PVAm/CNF/PVAm system. Interestingly, the antibacterial efficacy of this system was greater than that of the previous PVAm/PAA/PVAm system. A higher salt concentration and lower assembly pH in the multilayer build-up resulted in better bacterial reduction. As the surface of a cellulose fiber is heterogeneous, making it difficult to characterize and visualize at high resolution, more homogeneous cellulose model surfaces were prepared by spin coating the dissolved cellulose fiber onto a silica surface to model the fiber surface. With increasing ionic strength, more aggregated and heterogeneous structures can be observed on the PVAm/CNF/PVAm modified model surfaces. The adsorbed bacteria distributed on the structured surfaces were clearly seen under fluorescence microscopy. Adsorbed amounts of bacteria on either aggregate or flat regions were quantified by scanning electron microscopy (SEM). More adsorbed bacteria were clearly seen on aggregates than on the flat regions at the surfaces. Degrees of bacteria deformation and cell damage were also seen under SEM. The surface roughness of the modified model surfaces was examined by atomic force microscopy (AFM), and a positive correlation was found between the surface roughness and the bacterial adhesion. Thus, an additional factor that controls adhesion, in addition to the surface charge, which is probably the most dominant factor affecting the bacteria adhesion, is the surface structures, such as roughness. 

Place, publisher, year, edition, pages
De Gruyter Open Ltd , 2018. Vol. 33, no 3, p. 385-396
Keywords [en]
antibacterial, cellulose fiber, cellulose model surface, cellulose nano fiber, layer-by-layer, Adhesion, Aggregates, Atomic force microscopy, Bacteria, Cell adhesion, Cellulose, Fluorescence microscopy, Ionic strength, Multilayers, Nanofibers, Polyelectrolytes, Scanning electron microscopy, Silica, Spinning (fibers), Surface roughness, Textile fibers, Cellulose model surfaces, Layer by layer, Wood
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-236681DOI: 10.1515/npprj-2018-3050ISI: 000450923900004Scopus ID: 2-s2.0-85050598779OAI: oai:DiVA.org:kth-236681DiVA, id: diva2:1262575
Note

Export Date: 22 October 2018; Article; CODEN: NPPJE; Correspondence Address: Ek, M.; Department of Fiber and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of TechnologySweden; email: monicaek@kth.se; Funding details: 201407930001, CSC, China Scholarship Council; Funding text: Funding: We thank the Chinese Scholarship Council (201407930001) for financial support and RISE Bioecon-omy for technical support with the nitrogen analysis. QC 20181112

Available from: 2018-11-12 Created: 2018-11-12 Last updated: 2019-11-21Bibliographically approved
In thesis
1. Development of Non-leaching Antibacterial Approaches on Cellulose-based Substrates and Their Mechanisms
Open this publication in new window or tab >>Development of Non-leaching Antibacterial Approaches on Cellulose-based Substrates and Their Mechanisms
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The layer-by-layer (LbL) technique is becoming a powerful tool that has been applied in many surface coatings and functionalizations in recent years. It has many advantages including a fast and mild process, the flexibility of choice of substrate, and the easiness to scale-up. Novel antibacterial materials can be achieved using this technique, by immobilizing selected antibacterial agents on surfaces of desired substrates. An ideal antibacterial agent, a cationic polyelectrolyte, can be LbL-deposited onto the surfaces in mono or multi layers, make the surfaces lethal to the bacteria due to their positive charge. This approach is able not only to effectively control the spreading of bacteria but also to minimize bacterial resistance as well as the environmental impact.

Cellulose fibres modified by different cationic polyelectrolytes including PDADMAC, PAH, PVAm as either monolayer or multilayer assembled with PAA using LbL deposition have shown more than 99.99 % bacterial removal as well as the inhibition of bacterial growth. Among these modifications, two layers of PVAm assembled with one layer of PAA have shown the highest antibacterial efficiency due to the highest adsorbed amount and charge density. Secondly, PAA was replaced by a bio-based cellulose nano-fibril (CNF), as a middle layer between two layers of PVAm, which decreases the carbon-footprint and expands the possibility of using LbL technique in antibacterial applications, since the LbL technique can be used long as the alternate layers are oppositely charged. The fibres modified with this approach have shown similar and even better antibacterial properties than those of PAA.

To develop the antibacterial approach using LbL on cellulose fibres, it is also essential to understand the antibacterial mechanism. It was found that the charge density and surface structures are two important factors affecting bacterial adhesion and the bactericidal effect. To study this, different charged cellulose model surfaces were made by coating oxidized, regenerated cellulose followed by PVAm/CNF/PVAm LbL deposition, and a better antibacterial effect was observed on the higher charged surface. By calculating the force between the bacteria and charged surface, it was suggested that a higher interaction due to the higher surface charge causes a large stress on the bacterial cell wall which leads to the disruption of the bacteria. To further improve the bactericidal effect, the flat surfaces were patterned with micro and nano structures using a femtosecond laser technique. The weakening of the bacterial cell wall caused by the charged surface makes the bacteria more vulnerable and easier to disrupt. This approach has been shown to be valid on both Gram-positive S. aureus, and Gram-negative E. coli. The effect was greater on E. coli with a weaker membrane structure and higher surface potential, which shows that the antibacterial mechanism is a physical disrupt of the bacterial cell.

Abstract [sv]

Layer-by-layer tekniken (LbL) blir ett kraftfullt verktyg som har använts i många ytbeläggningar och funktionaliseringar de senaste åren. Det har många fördelar, inklusive en snabb och mild process, flexibiliteten i valet av underlag och enkelheten att skala upp. Nya antibakteriella material kan uppnås med hjälp av denna teknik genom att immobilisera utvalda antibakteriella medel på ytor av önskat underlag. Ett idealiskt antibakteriellt medel, en katjonisk polyelektrolyt, kan LbL-avsättas på ytorna i mono- eller flerskikt, vilket gör ytorna dödliga för bakterierna på grund av deras positiva laddning. Detta tillvägagångssätt kan inte bara effektivt kontrollera spridning av bakterier utan också att minimera bakteriell resistens såväl som miljöpåverkan. Cellulosafibrer modifierade av olika katjoniska polyelektrolyter inklusive PDADMAC, PAH, PVAm som antingen monolager eller flerskikt sammansatt med PAA med användning av LbL-deposition har visat mer än 99,99% bakteriellt avlägsnande samt hämning av bakterietillväxt. Bland dessa modifieringar har två lager av PVAm sammansatt med ett skikt av PAA visat den högsta antibakteriella effektiviteten på grund av den högsta adsorberade mängden och laddningstäthet. För det andra ersattes PAA av en biobaserad cellulosanano-fibril (CNF), som ett mittlager mellan två lager av PVAm, vilket minskar kol-fotavtrycket och utvidgar möjligheten att använda LbL-teknik i antibakteriella tillämpningar, eftersom LbL-tekniken kan användas så länge som de alternativa skikten är motsatt laddade. Fibrerna modifierade med denna metod har visat liknande och ännu bättre antibakteriella egenskaper än hos PAA. Förutom att utveckla den antibakteriella metoden med hjälp av LbL på cellulosafibrer, är det också viktigt att förstå den antibakteriella mekanismen. Det visade sig att laddningstätheten och ytstrukturerna är två viktiga faktorer som påverkar bakteriell vidhäftning och den bakteriedödande effekten. För att studera detta gjordes olika laddade cellulosamodytor genom beläggning av oxiderad, regenererad cellulosa följt av PVAm / CNF / PVAm LbL-deposition och en bättre antibakteriell effekt observerades på den högre laddade ytan. Genom att beräkna kraften mellan bakterierna och laddad yta föreslogs att en högre interaktion på grund av den högre ytladdningen orsakar en stor påkänning på bakteriecellväggen vilket leder till störning av bakterierna. För att ytterligare förbättra den bakteriedödande effekten mönstrades de plana ytorna med mikro- och nanokonstruktioner med användning av en femtosekund laserteknik. Försvagningen av det bakteriella yttre membranet orsakat av den laddade ytan gör bakterierna mer sårbara och lättare att störa. Detta tillvägagångssätt har visat sig vara giltigt på både Gram-positiv S. aureus viii och gram-negativ E. coli. Effekten var större på E. coli med en svagare membranstruktur och högre ytpotential, vilket visar att den antibakteriella mekanismen är en fysisk störning av bakteriecellen.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2019. p. 75
Series
TRITA-CBH-FOU ; 2019: 70
Keywords
Layer-by-layer, antibacterial, cellulose materials
National Category
Polymer Technologies
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-264035 (URN)978-91-7873-292-0 (ISBN)
Public defence
2019-12-13, Kollegiesalen, Brinellvagen 8, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 2019-11-22

Available from: 2019-11-22 Created: 2019-11-20 Last updated: 2019-11-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Ek, Monica

Search in DiVA

By author/editor
Chen, ChaoEk, Monica
By organisation
Fibre- and Polymer Technology
In the same journal
Nordic Pulp & Paper Research Journal
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 629 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf