CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt178",{id:"formSmash:upper:j_idt178",widgetVar:"widget_formSmash_upper_j_idt178",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt181_j_idt187",{id:"formSmash:upper:j_idt181:j_idt187",widgetVar:"widget_formSmash_upper_j_idt181_j_idt187",target:"formSmash:upper:j_idt181:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Non-equilibrium dynamics of exactly solvable quantum many-body systemsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm, Sweden: KTH Royal Institute of Technology, 2018. , p. 94
##### Series

TRITA-SCI-FOU ; 2018:49
##### National Category

Physical Sciences
##### Research subject

Physics
##### Identifiers

URN: urn:nbn:se:kth:diva-239155ISBN: 978-91-7873-032-2 (print)OAI: oai:DiVA.org:kth-239155DiVA, id: diva2:1263838
##### Public defence

2018-12-14, FD5, AlbaNova University Center, KTH Royal Institute of Technology, Stockholm, 10:00
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt611",{id:"formSmash:j_idt611",widgetVar:"widget_formSmash_j_idt611",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt625",{id:"formSmash:j_idt625",widgetVar:"widget_formSmash_j_idt625",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt640",{id:"formSmash:j_idt640",widgetVar:"widget_formSmash_j_idt640",multiple:true});
##### Note

##### List of papers

Recent experimental advances on ultracold atomic gases and trapped ions have made it possible to simulate exactly solvable quantum systems of interacting particles. In particular, the feasibility of making rapid changes, so-called quantum quenches, to such set-ups has allowed experimentalists to probe non-equilibrium phenomena in closed interacting quantum systems. This, in turn, has spurred a considerable theoretical interest in quantum many-body systems out of equilibrium.

In this thesis, we study non-equilibrium properties of quantum many-body systems in the framework of exactly solvable quantum field theory in one spatial dimension. Specific systems include interacting fermions described by the Luttinger model and effective descriptions of spin chains using conformal field theory (CFT). Special emphasis is placed on heat and charge transport, studied from the point of view of quench dynamics, and, in particular, the effects of breaking conformal symmetries on transport properties. Examples include the Luttinger model with non-local interactions, breaking Lorentz and scale invariance, and inhomogeneous CFT, which generalizes standard CFT in that the usual propagation velocity v is replaced by a function v(x) that depends smoothly on the position x, breaking translation invariance.

The quench dynamics studied here is for quantum quenches between, in general, different smooth inhomogeneous systems. An example of this is the so-called smooth-profile protocol, in which the initial state is defined by, e.g., smooth inhomogeneous profiles of inverse temperature and chemical potential, and the time evolution is governed by a homogeneous Hamiltonian. Using this protocol, we compute exact analytical results for the full time evolution of the systems mentioned above. In particular, we derive finite-time results that are universal in the sense that the same relations between the non-equilibrium dynamics and the initial profiles hold for any unitary CFT. These results also make clear that heat and charge transport in standard CFT are purely ballistic.

Finally, we propose and study an inhomogeneous CFT model with v(x) given by a random function. We argue that this model naturally emerges as an effective description of one-dimensional quantum many-body systems with certain static random impurities. Using tools from wave propagation in random media, we show that such impurities lead to normal and anomalous diffusive contributions to heat transport on top of the ballistic one known from standard CFT.

QC 20181119

Available from: 2018-11-19 Created: 2018-11-16 Last updated: 2018-11-21Bibliographically approved1. Construction by bosonization of a fermion-phonon model$(function(){PrimeFaces.cw("OverlayPanel","overlay864027",{id:"formSmash:j_idt728:0:j_idt733",widgetVar:"overlay864027",target:"formSmash:j_idt728:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Steady states and universal conductance in a quenched Luttinger model$(function(){PrimeFaces.cw("OverlayPanel","overlay1009221",{id:"formSmash:j_idt728:1:j_idt733",widgetVar:"overlay1009221",target:"formSmash:j_idt728:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Time evolution of the Luttinger model with nonuniform temperature profile$(function(){PrimeFaces.cw("OverlayPanel","overlay1121834",{id:"formSmash:j_idt728:2:j_idt733",widgetVar:"overlay1121834",target:"formSmash:j_idt728:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Finite-Time Universality in Nonequilibrium CFT$(function(){PrimeFaces.cw("OverlayPanel","overlay1235671",{id:"formSmash:j_idt728:3:j_idt733",widgetVar:"overlay1235671",target:"formSmash:j_idt728:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Diffusive Heat Waves in Random Conformal Field Theory$(function(){PrimeFaces.cw("OverlayPanel","overlay1263827",{id:"formSmash:j_idt728:4:j_idt733",widgetVar:"overlay1263827",target:"formSmash:j_idt728:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1915",{id:"formSmash:j_idt1915",widgetVar:"widget_formSmash_j_idt1915",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1968",{id:"formSmash:lower:j_idt1968",widgetVar:"widget_formSmash_lower_j_idt1968",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1969_j_idt1971",{id:"formSmash:lower:j_idt1969:j_idt1971",widgetVar:"widget_formSmash_lower_j_idt1969_j_idt1971",target:"formSmash:lower:j_idt1969:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});