Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Models for assessing net CO2 emissions applied on district heating technologies
KTH, Superseded Departments, Chemical Engineering and Technology.ORCID iD: 0000-0003-3315-4201
Linköping Institute of Technology, Department of Mechanical Engineering, Division of Energy Systems.
KTH, Superseded Departments, Chemical Engineering and Technology.
2003 (English)In: International journal of energy research (Print), ISSN 0363-907X, E-ISSN 1099-114X, Vol. 27, no 6, 601-613 p.Article in journal (Refereed) Published
Abstract [en]

Methodologies to assess the effects of energy projects on global carbon dioxide emissions will be an important feature of a future international carbon dioxide trading system. In this paper, we present and discuss four different models for assessing the net carbon dioxide emissions resulting from a certain energy project. These models are applied to different district heating technologies. To judge the mitigation performance of a project, the amount of carbon dioxide released in kilograms is expressed per megawatt-hour of useful district heating produced. All the models consider the marginal change caused by the project on the electric power system. The different model perspectives are discussed, and it is shown that the choice of model is very critical for assessing the net carbon dioxide emissions from an energy project.

Place, publisher, year, edition, pages
2003. Vol. 27, no 6, 601-613 p.
Keyword [en]
CO2, crediting, model, district heating, marginal power
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-7582DOI: 10.1002/er.898ISI: 000182554300005OAI: oai:DiVA.org:kth-7582DiVA: diva2:12653
Note
QC 20101015Available from: 2005-10-18 Created: 2005-10-18 Last updated: 2017-12-14Bibliographically approved
In thesis
1. All CO2 molecules are equal, but some CO2 molecules are more equal than others
Open this publication in new window or tab >>All CO2 molecules are equal, but some CO2 molecules are more equal than others
2005 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

This thesis deals with some challenges related to the mitigation of climate change and the overall aim is to present and assess different possibilities for the mitigation of climate change by:

• Suggesting some measures with a potential to abate net greenhouse gas (GHG) emissions,

• Discussing ideas for how decision-makers could tackle some of the encountered obstacles linked to these measures, and

• Pointing at some problems with the current Kyoto framework and suggesting modifications of it.

The quantification of the net CO2 effect from a specific project, frequently referred to as emissions accounting, is an important tool to evaluate projects and strategies for mitigating climate change. This thesis discusses different emissions accounting methods. It is concluded that no single method ought to be used for generalisation purposes, as many factors may affect the real outcome for different projects. The estimated outcome is extremely dependent on the method chosen and, thus, the suggested approach is to apply a broader perspective than the use of a particular method for strategic decisions. The risk of losing the integrity of the Kyoto Protocol when over-simplified emissions accounting methods are applied for the quantification of emission credits that can be obtained by a country with binding emissions targets for projects executed in a country without binding emission targets is also discussed.

Driving forces and obstacles with regard to energy-related co-operations between industries and district heating companies have been studied since they may potentially reduce net GHG emissions. The main conclusion is that favourable techno-economic circumstances are not sufficient for the implementation of a co-operation; other factors like people with the true ambition to co-operate are also necessary.

How oxy-fuel combustion for CO2 capture and storage (CCS) purposes may be much more efficiently utilised together with some industrial processes than with power production processes is also discussed. As cost efficiency is relevant for the Kyoto framework, this thesis suggests that CCS performed on CO2 from biomass should be allowed to play on a level playing field with CCS from fossil sources, as the outcome for the atmosphere is independent of the origin of the CO2.

Place, publisher, year, edition, pages
Stockholm: KTH, 2005. 71 p.
Series
Trita-KET, ISSN 1104-3466 ; 221
Keyword
climate change mitigation, abatement of GHG-emissions, co-operation, district heating, waste-heat utilisation
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-452 (URN)91-7178-163-3 (ISBN)
Public defence
2005-10-21, Sal D3, Lindstedtsvägen 5, Stockholm, 10:00
Opponent
Supervisors
Note
QC 20101015Available from: 2005-10-18 Created: 2005-10-18 Last updated: 2010-10-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Grönkvist, Stefan

Search in DiVA

By author/editor
Grönkvist, StefanWestermark, Mats
By organisation
Chemical Engineering and Technology
In the same journal
International journal of energy research (Print)
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 187 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf