Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
Show others and affiliations
2018 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 162, p. 99-110Article in journal (Refereed) Published
Abstract [en]

The replacement of HFCs using lower GWP refrigerants in the coming years is a priority to reduce the predicted climate change. The exergy analysis of vapor compression systems can help to identify the feasibility of alternative fluids in existing installations and the potential to improve them. In this sense, this paper presents an exergy analysis of an experimental setup which operates with R134a and the alternative HFO/HFC mixture R513A. The evaporating temperature is ranges between −15 °C and 5 °C, while the condensing temperature is set at 30 °C and 35 °C. In this analysis, the highest amount of exergy destruction rate is obtained at the compressor, followed by the evaporator. The maximum exergy efficiencies are observed at the condenser and the thermostatic expansion device. Finally, the average global exergy efficiency of R513A when replaced R134a in this refrigeration experimental setup is 0.4% higher (absolute difference), and with respect to the components, there is only slight reduction in efficiency in the condenser using R513A. Therefore, the R513A replacement is acceptable according to the second law of thermodynamics. 

Place, publisher, year, edition, pages
Elsevier Ltd , 2018. Vol. 162, p. 99-110
Keywords [en]
Exergy destruction rate, Global warming potential, R513A, Second law of thermodynamics, Vapor compression, Efficiency, Global warming, Refrigeration, Exergy destructions, Exergy, climate change, compression, energy efficiency, experimental study, feasibility study, installation, temperature, thermodynamics
National Category
Environmental Engineering
Identifiers
URN: urn:nbn:se:kth:diva-236607DOI: 10.1016/j.energy.2018.08.028ISI: 000447576500009Scopus ID: 2-s2.0-85051107069OAI: oai:DiVA.org:kth-236607DiVA, id: diva2:1265726
Note

Export Date: 22 October 2018; Article; CODEN: ENEYD; Correspondence Address: Belman-Flores, J.M.; School of Engineering Campus Irapuato-Salamanca, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5+1.8, Comunidad de Palo BlancoMexico; email: jfbelman@ugto.mx; Funding details: Energimyndigheten; Funding details: R513A, SFFA, Svenska Föreningen för Allergologi; Funding details: POSDOC/2016/23, SFFA, Svenska Föreningen för Allergologi; Funding text: This research is done within the Effsys Expand P08 project that is funded by the Swedish Energy Agency with the support of Bosch Thermoteknik AB, Danfoss Värmepumpar AB, Nibe AB, Nowab, Svensk Energi & Kylanalys AB and Svenska Kyltekniska Föreningen. Adrián Mota-Babiloni would like to acknowledge the funding received from the Plan for the promotion of research of the University Jaume I for the year 2016 [Grant number POSDOC/2016/23 ]. Appendix A In this appendix section, the condensing and evaporating experimental temperatures for R134a and R513A is reported. Likewise, the uncertainty of exergy efficiency and exergy destruction rate for the global system and its main four components is also provided. Table A1 Uncertainty of the estimated parameters for R134a and R513A. Table A1 Refrigerant T cond [°C] T evap [°C] Uncertainty (±) Global Compressor Condenser TXV Evaporator η ex [-] E ˙ d [W] η ex [-] E ˙ d [W] η ex [-] E ˙ d [W] η ex [-] E ˙ d [W] η ex [-] E ˙ d [W] R134a 30.0 −15.0 0.0011 1.1 0.0058 2.7 0.0164 0.4 0.0005 0.3 0.0112 2.0 R134a 30.1 −12.4 0.0012 1.2 0.0053 2.6 0.0177 0.4 0.0005 0.3 0.0100 1.9 R134a 30.0 −9.8 0.0013 1.2 0.0050 2.4 0.0194 0.4 0.0004 0.2 0.0086 1.8 R134a 30.0 −7.7 0.0013 1.2 0.0047 2.3 0.0199 0.5 0.0004 0.2 0.0079 1.7 R134a 29.9 −5.3 0.0018 1.3 0.0044 2.2 0.0242 0.5 0.0004 0.2 0.0069 1.6 R134a 30.0 −2.3 0.0019 1.4 0.0039 2.0 0.0240 0.5 0.0003 0.2 0.0059 1.5 R134a 30.1 0.1 0.0021 1.4 0.0037 1.9 0.0250 0.6 0.0003 0.2 0.0052 1.4 R134a 30.0 2.7 0.0022 1.4 0.0034 1.8 0.0266 0.6 0.0003 0.2 0.0048 1.3 R134a 30.0 5.2 0.0023 1.5 0.0031 1.7 0.0283 0.7 0.0002 0.2 0.0046 1.2 R134a 35.1 −14.82 0.0009 1.12 0.0060 2.91 0.0075 0.64 0.0006 0.34 0.0127 1.98 R134a 35.1 −12.01 0.0010 1.13 0.0055 2.74 0.0077 0.63 0.0005 0.30 0.0110 1.85 R134a 35.0 −9.90 0.0010 1.14 0.0051 2.60 0.0080 0.62 0.0005 0.27 0.0102 1.76 R134a 35.0 −7.54 0.0011 1.17 0.0049 2.47 0.0083 0.61 0.0005 0.28 0.0085 1.63 R134a 35.0 −4.78 0.0010 1.15 0.0045 2.32 0.0041 0.52 0.0004 0.27 0.0068 1.51 R134a 34.9 −2.51 0.0013 1.22 0.0042 2.19 0.0090 0.64 0.0004 0.24 0.0061 1.43 R134a 35.0 −0.04 0.0015 1.25 0.0039 2.07 0.0092 0.67 0.0004 0.23 0.0054 1.33 R134a 35.0 2.75 0.0016 1.28 0.0036 1.93 0.0093 0.71 0.0003 0.21 0.0049 1.23 R134a 35.1 5.11 0.0017 1.31 0.0033 1.83 0.0095 0.74 0.0003 0.20 0.0046 1.15 R513A 30.0 −15.0 0.0012 1.34 0.0064 3.06 0.0146 0.46 0.0005 0.31 0.0096 2.18 R513A 30.1 −12.5 0.0013 1.35 0.0059 2.87 0.0138 0.49 0.0005 0.30 0.0085 2.01 R513A 30.0 −10.0 0.0014 1.37 0.0055 2.72 0.0146 0.51 0.0004 0.26 0.0078 1.91 R513A 30.0 −7.6 0.0014 1.38 0.0051 2.58 0.0136 0.54 0.0004 0.26 0.0069 1.77 R513A 29.9 −5.3 0.0015 1.40 0.0048 2.43 0.0150 0.56 0.0004 0.23 0.0062 1.67 R513A 30.0 −2.7 0.0016 1.42 0.0043 2.27 0.0145 0.62 0.0003 0.21 0.0055 1.53 R513A 30.1 0.0 0.0017 1.45 0.0041 2.15 0.0154 0.65 0.0003 0.19 0.0051 1.42 R513A 30.0 2.6 0.0018 1.48 0.0037 2.02 0.0154 0.70 0.0003 0.18 0.0047 1.32 R513A 30.0 5.1 0.0020 1.52 0.0035 1.91 0.0177 0.75 0.0002 0.15 0.0045 1.23 R513A 35.1 −14.89 0.0010 1.32 0.0065 0.72 0.0066 0.72 0.0005 0.36 0.0099 2.12 R513A 35.1 −12.39 0.0011 1.34 0.0061 0.73 0.0067 0.73 0.0005 0.35 0.0088 1.97 R513A 35.0 −10.18 0.0012 1.35 0.0057 0.72 0.0068 0.72 0.0005 0.33 0.0080 1.85 R513A 35.0 −7.59 0.0013 1.37 0.0053 0.71 0.0071 0.71 0.0004 0.29 0.0071 1.74 R513A 35.0 −4.95 0.0013 1.38 0.0050 0.73 0.0072 0.73 0.0004 0.28 0.0063 1.60 R513A 34.9 −2.47 0.0014 1.39 0.0045 0.75 0.0071 0.75 0.0004 0.25 0.0059 1.48 R513A 35.0 −0.15 0.0015 1.42 0.0043 0.76 0.0074 0.76 0.0003 0.22 0.0054 1.39 R513A 35.0 2.39 0.0016 1.46 0.0040 0.80 0.0075 0.80 0.0003 0.21 0.0048 1.29 R513A 35.1 4.93 0.0017 1.49 0.0037 0.84 0.0074 0.84 0.0003 0.20 0.0046 1.19. QC 20181126

Available from: 2018-11-26 Created: 2018-11-26 Last updated: 2018-12-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Makhnatch, Pavel

Search in DiVA

By author/editor
Makhnatch, Pavel
By organisation
Applied Thermodynamics and Refrigeration
In the same journal
Energy
Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 106 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf