Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dynamic response of the brain with vasculature: A three-dimensional computational study
KTH, School of Technology and Health (STH), Neuronic Engineering.ORCID iD: 0000-0001-9785-2071
KTH, School of Technology and Health (STH), Neuronic Engineering.ORCID iD: 0000-0003-0125-0784
2007 (English)In: Journal of Biomechanics, ISSN 0021-9290, E-ISSN 1873-2380, Vol. 40, no 13, 3006-3012 p.Article in journal (Refereed) Published
Abstract [en]

To date, the influence of the vasculature on the dynamic response of the brain has not been studied with a complete three-dimensional (3D) finite element head model. In this study, short duration rotational (10,000 rad/s2 with a duration of 5 ms) and translational (100G with a duration of 5 ms) acceleration impulses were applied to the 3D finite element models to study the dynamic response of the brain. The hypothesis of this study was that due to the convoluted organization and non-linear material properties of cerebral vasculature, the difference in maximum principle strain between models with and without vasculature should be minimal. The effects of non-linear material properties and the convoluted structure of the vasculature were examined by comparing the results from the 3D finite element models. The peak average strain reduction in a model with non-linear elastic vasculature and a model with linear elastic vasculature compared to a model without vasculature was 2% and 5%, respectively, indicating that the influence of the vasculature on the dynamic response of the brain is minimal.

Place, publisher, year, edition, pages
2007. Vol. 40, no 13, 3006-3012 p.
Keyword [en]
Human head model, Finite element analysis, Cerebral blood vessels, Traumatic brain injury
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-9584DOI: 10.1016/j.jbiomech.2007.02.011ISI: 000250277800023Scopus ID: 2-s2.0-34548513569OAI: oai:DiVA.org:kth-9584DiVA: diva2:126647
Note
QC 20100811Available from: 2008-11-19 Created: 2008-11-19 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Generation of Patient Specific Finite Element Head Models
Open this publication in new window or tab >>Generation of Patient Specific Finite Element Head Models
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Traumatic brain injury (TBI) is a great burden for the society worldwide and the statisticsindicates a relative constant total annual rate of TBI. It seems that the present preventativestrategies are not sufficient. To be able to develop head safety measures against accidents ine.g. sports or automobile environment, one needs to understand the mechanism behindtraumatic brain injuries. Through the years, different test subjects have been used, such ascadavers, animals and crash dummies, but there are ethical issues in animal and human testingusing accelerations at injury-level and crash dummies are not completely human-like. In aFinite Element (FE) head model, the complex shape of the intracranial components can bemodeled and mechanical entities, such as pressure, stresses and strains, can be quantified atany theoretical point. It is suggested that the size of the head, the skull-brain boundarycondition, the heterogeneity, and the tethering and suspension system can alter the mechanicalresponse of the brain. It can be seen that the shape of the skull, the composition of gray andwhite matter, the distribution of sulci, the volume of cerebrospinal fluid and geometry of othersoft tissues varies greatly between individuals. All this, suggests the development of patientspecific FE head models.A method to generate patient specific FE head model was contrived based on the geometryfrom Magnetic Resonance Imaging (MRI) scans. The geometry was extracted usingexpectation maximization classification and the mesh of the FE head model was constructedby directly converting the pixel into hexahedral elements. The generated FE model had goodelement quality, the geometrical details were more than 90 % accurate and it correlated wellwith experimental data of relative brain-skull motion. The method was thought to beautomatic but some hypothetically important anatomical structures were not possible to beextracted from medical images. This leads to investigations on the biomechanical influence ofthe cerebral vasculature, the falx and tentorium complex. It was found that biomechanicalinfluence of the cerebral vasculature was minimal, due to the convoluting geometry and thenon-linear elastic material properties of the blood vessels. It suggests that futurebiomechanical FE head model does not necessarily have to include these blood vessels. Theinclusion of falx and tentorium in an FE head model has on the other hand a substantialbiomechanical influence by affecting its surrounding tissue. Therefore, in the investigation ofthe biomechanical influence of the sulci, the falx and tentorium were manually added to theanatomically detailed 3D FE head model. The biomechanical influence of the sulci haspreviously not been studied in 3D and the results indicated an obvious reduction of the strainin the model with sulci compared to the model without sulci in all simulations, and mostinteresting was the consistent reduction of strain in the corpus callosum. The development ofgyri not only produces a larger area for synapses but also forms the sulci to protect the brainfrom external forces.Based on the results, a patient specific FE head model for traumatic brain injury predictionshould at least include the skull, cerebrospinal fluid, falx, tentorium and pia mater, in additionto the brain. With these anatomically detailed 3D models, the injury biomechanics can bebetter understood. Hopefully, the burden of TBI to the society can be alleviated with betterprotective systems and improved understanding of the patients’ condition and hence, theirmedical treatments

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. vi, 39 p.
Series
Trita-STH : report, ISSN 1653-3836 ; 2008:7
Keyword
Injury Prevention, Patient Specific, Finite Element Head Model, Anatomical Structures
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-9585 (URN)978-91-7415-191-6 (ISBN)
Public defence
2008-12-12, Lecture hall 3-221, Alfred Nobels Allé 10, Huddinge, 13:00 (English)
Opponent
Supervisors
Note
QC 20100811Available from: 2008-11-21 Created: 2008-11-19 Last updated: 2010-08-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Ho, JohnsonKleiven, Svein

Search in DiVA

By author/editor
Ho, JohnsonKleiven, Svein
By organisation
Neuronic Engineering
In the same journal
Journal of Biomechanics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 106 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf