Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spatially differentiated midpoint indicator for marine eutrophication of waterborne emissions in Sweden
Swedish Univ Agr Sci SLU, Dept Energy & Technol, POB 7032, S-75007 Uppsala, Sweden..
Swedish Univ Agr Sci SLU, Dept Energy & Technol, POB 7032, S-75007 Uppsala, Sweden..
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure. Swedish Univ Agr Sci SLU, Dept Energy & Technol, POB 7032, S-75007 Uppsala, Sweden.ORCID iD: 0000-0001-5979-9521
2018 (English)In: The International Journal of Life Cycle Assessment, ISSN 0948-3349, E-ISSN 1614-7502, Vol. 23, no 1, p. 70-81Article in journal (Refereed) Published
Abstract [en]

In life cycle assessment (LCA), eutrophication is commonly assessed using site-generic characterisation factors, despite being a site-dependent environmental impact. The purpose of this study was to improve the environmental relevance of marine eutrophication impact assessment in LCA, particularly regarding the impact assessment of waterborne nutrient emissions from Swedish agriculture. Characterisation factors were derived using site-dependent data on nutrient transport for all agricultural soils in Sweden, divided into 968 catchment areas, and considering the Baltic Sea, the receiving marine compartment, as both nitrogen- and phosphorus-limited. These new characterisation factors were then applied to waterborne nutrient emissions from typical grass ley and spring barley cultivation in all catchments. The site-dependent marine eutrophication characterisation factors obtained for nutrient leaching from soils varied between 0.056 and 0.986 kg N-eq/kg N and between 0 and 7.23 kg N-eq/kg P among sites in Sweden. On applying the new characterisation factors to spring barley and grass ley cultivation at different sites in Sweden, the total marine eutrophication impact from waterborne nutrient emissions for these crops varied by up to two orders of magnitude between sites. This variation shows that site plays an important role in determining the actual impact of an emission, which means that site-dependent impact assessment could provide valuable information to life cycle assessments and increase the relevance of LCA as a tool for assessment of product-related eutrophication impacts. Characterisation factors for marine eutrophication impact assessment at high spatial resolution, considering both the site-dependent fate of eutrophying compounds and specific nutrient limitations in the recipient waterbody, were developed for waterborne nutrient emissions from agriculture in Sweden. Application of the characterisation factors revealed variations in calculated impacts between sites in Sweden, highlighting the importance of spatial differentiation of characterisation modelling within the scale of the impact.

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2018. Vol. 23, no 1, p. 70-81
Keywords [en]
Baltic Sea, Characterisation factors, Fate, LCIA, Life cycle assessment, Life cycle impact assessment, Nutrient limitation, Site-dependent
National Category
Environmental Sciences
Identifiers
URN: urn:nbn:se:kth:diva-240259DOI: 10.1007/s11367-017-1298-7ISI: 000419167100006Scopus ID: 2-s2.0-85014916549OAI: oai:DiVA.org:kth-240259DiVA, id: diva2:1270426
Note

QC 20181213

Available from: 2018-12-13 Created: 2018-12-13 Last updated: 2018-12-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Sundberg, Cecilia

Search in DiVA

By author/editor
Sundberg, Cecilia
By organisation
Resources, Energy and Infrastructure
In the same journal
The International Journal of Life Cycle Assessment
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 149 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf