Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Photodegradation of Ibuprofen, Cetirizine, and Naproxen by PAN-MWCNT/TiO2-NH2 nanofiber membrane under UV light irradiation
KTH, School of Engineering Sciences (SCI), Applied Physics.
2018 (English)In: Environmental Sciences Europe, ISSN 2190-4707, E-ISSN 2190-4715, Vol. 30, article id 47Article in journal (Refereed) Published
Abstract [en]

Background: In this study, the photodegradation of three pharmaceuticals, namely Ibuprofen (IBP), Naproxen (NPX), and Cetirizine (CIZ) in aqueous media was investigated under UV irradiation. The photocatalyst used in this work consists of surface functionalized titanium dioxide (TiO2-NH2) nanoparticles grafted into Polyacrylonitrile (PAN)/multi-walled carbon nanotube composite nanofibers. Surface modification of the fabricated composite nanofibers was illustrated using XRD, FTIR, and SEM analyses. Results: Sets of experiments were performed to study the effect of pharmaceuticals initial concentration (5-50 mg/L), solution pH (2-9), and irradiation time on the degradation efficiency. The results demonstrated that more than 99% degradation efficiency was obtained for IBP, CIZ, and NPX within 120, 40, and 25 min, respectively. Conclusions: Comparatively, the photocatalytic degradation of pharmaceuticals using PAN-CNT/TiO2-NH2 composite nanofibers was much more efficient than with PAN/TiO2-NH2 composite nanofibers.

Place, publisher, year, edition, pages
SPRINGEROPEN , 2018. Vol. 30, article id 47
Keywords [en]
Photocatalytic, Cetirizine, Naproxen, Ibuprofen, Composite nanofibers, UV-light
National Category
Polymer Technologies
Identifiers
URN: urn:nbn:se:kth:diva-240348DOI: 10.1186/s12302-018-0177-6ISI: 000452025200001Scopus ID: 2-s2.0-85057786194OAI: oai:DiVA.org:kth-240348DiVA, id: diva2:1271373
Note

QC 20181217

Available from: 2018-12-17 Created: 2018-12-17 Last updated: 2018-12-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Uheida, Abdusalam

Search in DiVA

By author/editor
Uheida, Abdusalam
By organisation
Applied Physics
In the same journal
Environmental Sciences Europe
Polymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf