Change search
ReferencesLink to record
Permanent link

Direct link
Assessment and Evaluation of Man-portable Robots for High-Risk Professions in Urban Settings
KTH, School of Information and Communication Technology (ICT), Computer and Systems Sciences, DSV.
2007 (English)Doctoral thesis, monograph (Other scientific)
Abstract [en]

There are a number of professions in which exposure to life threatening risks is part of daily routine and robots could possibly be used to avoid some of these. In fact, there are applications in which this is already done, the most prominent being bomb disposal and mine clearing. The user testing of new technology is part of achieving similar benefits for other tasks. Methods for use need to be explored, technical solutions have to be trialed, and advantages gained must be compared to the loads imposed in order to guide future development and to determine if the new tools are ready to be deployed.

This thesis has performed such feasibility tests on robots within Military Operations in Urban Terrain (MOUT). The aim has been to gain a comprehensive view of a potential user and to embed a robot amongst them in order to assess its tactical feasibility and evaluate its technical performance. An army company specialized in urban operations made up the primary user group and an iRobot Packbot Scout was the robot system in focus. Setting up the tests included identifying and modifying a number of the company’s standard behaviors to include the robot. During the two tests, which lasted over a period of three and six months respectively, it was up to the users to deploy the robot as they considered appropriate.

It was found that the military rely on precise and thoroughly trained actions that can be executed with a minimum of ambiguity. Gaining similar efficiency with robots will require tactical optimization over several years. The most common application during the tests was exploration inside buildings in situations where an enemy presence was uncertain and time was not critical. Deploying the robot took more time and was less precise than traditional methods. In return it kept the soldiers out of harm’s way and enabled them to decrease weapon deployment. The range of the radio link, limited video feedback, and the operator control unit were the features constraining the system’s overall performance the most. Other properties, such as the robot’s ruggedness, size, weight, terrain ability and endurance of the robot, on the other hand, proved to match the application. The test unit was of the opinion that robots such as the Packbot Scout would be valuable to have as a standard feature.

Four additional users groups were surveyed to examine to what extent the gained results had general validity for high-risk professionals. The most extensive of these included embedding a Packbot into a Special Weapons And Tactics (SWAT) police team for five months. It was found that the robot could be used during negotiation if upgraded with two-way audio. Further technical adaptations would also enable deployment during long term surveillance and for deploying non-lethal weapons.

Explosive Ordnance Disposal (EOD), firefighting, and Chemical Biological Radiological and Nuclear Contamination Control (CBRN) were the other groups surveyed. These were investigated by means of interviews and observations during 1-2 days. It was found that while the five professions share many demands they also have unique needs which prevents a single type of robot from being satisfactory for all of them. The tasks within EOD and fire fighting includes grasping and moving objects of up to 50-70 kg. The MOUT, CBRN and SWAT applications are less dependent on the grasping ability, but require a robot that can be easily transported and which is able to access narrows.

Place, publisher, year, edition, pages
Stockholm: KTH , 2007. , ix, 165 p.
Trita-CSC-A, ISSN 1653-5723 ; 2007:18
Keyword [en]
robot, evaluation, military, urban, man-portable, UGV
National Category
Other Engineering and Technologies not elsewhere specified
URN: urn:nbn:se:kth:diva-4540ISBN: 978-91-7178-791-0OAI: diva2:12748
Public defence
2007-12-12, F3, Lindstedtsvägen 26, THH, Valhallavägen 79, Stockholm, 13:00
QC 20100806Available from: 2007-11-19 Created: 2007-11-19 Last updated: 2010-08-06Bibliographically approved

Open Access in DiVA

fulltext(3831 kB)2639 downloads
File information
File name FULLTEXT01.pdfFile size 3831 kBChecksum MD5
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Lundberg, Carl
By organisation
Computer and Systems Sciences, DSV
Other Engineering and Technologies not elsewhere specified

Search outside of DiVA

GoogleGoogle Scholar
Total: 2639 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 706 hits
ReferencesLink to record
Permanent link

Direct link