Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Validation of Star-CCM plus for liquid metal thermal-hydraulics using TALL-3D experiment
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.ORCID iD: 0000-0001-5653-9206
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.ORCID iD: 0000-0002-0683-9136
2019 (English)In: Nuclear Engineering and Design, ISSN 0029-5493, E-ISSN 1872-759X, Vol. 341, p. 306-325Article in journal (Refereed) Published
Abstract [en]

Computational Fluid Dynamics (CFD) provides means for high-fidelity 3D thermal-hydraulics analysis of Generation IV pool-type nuclear reactors. However, to be used in the decision making process a proof of code adequacy for intended application is required. This paper describes the Verification, Validation and Uncertainty Quantification (VVUQ) of a commercial CFD code Star-CCM + for forced, natural and mixed convection regimes in lead-bismuth eutectic (LBE) coolant pool flows. Code qualification is carried out according to an iterative VVUQ process aiming to reduce user effects. Validation data is produced in TALL-3D experimental facility - a 7 m high LBE loop featuring a 3D pool-type test section. Accurate prediction of mutual interaction between thermal stratification and mixing in the pool and the loop dynamics requires 3D analysis, especially during natural circulation. Solution verification is used to reduce the numerical uncertainty during code validation activities. Sensitivity Analysis (SA) is used to identify the effect of the most influential uncertain input parameters (UIPs) on numerical results. Two new visualization methods are proposed to enhance interpretation of the SA results. Dedicated experiments are performed according to the SA results to reduce the uncertainties in the most important UIPs. Automated calibration method for large CFD models is tested and demonstrated in combination with manual calibration using detailed temperature profile measurements in the pool. Calibration reveals the deficiencies in the modeling of heat losses owing to the presence of thermal bridges and other local effects in thermal insulation that are not explicitly modeled. It is demonstrated that Star-CCM + is able to predict thermal stratification and mixing phenomena in the pool type geometries. The results are supported by an Uncertainty Analysis (UA).

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 341, p. 306-325
Keywords [en]
LFR, CFD, VVUQ, Pool thermal-hydraulics, Star-CCM
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-240701DOI: 10.1016/j.nucengdes.2018.11.015ISI: 000453016700028Scopus ID: 2-s2.0-85056899609OAI: oai:DiVA.org:kth-240701DiVA, id: diva2:1277699
Funder
EU, FP7, Seventh Framework Programme, FP7-249337
Note

QC 20190111

Available from: 2019-01-11 Created: 2019-01-11 Last updated: 2020-03-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Jeltsov, MartiGrishchenko, DmitryKudinov, Pavel

Search in DiVA

By author/editor
Jeltsov, MartiGrishchenko, DmitryKudinov, Pavel
By organisation
Nuclear Power Safety
In the same journal
Nuclear Engineering and Design
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 74 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf