Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of polymeric additives on short-time creep of paper
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.ORCID iD: 0000-0001-8622-0386
2007 (English)In: Nordic Pulp and Paper Research Journal, ISSN 0283-2631, Vol. 22, no 2, 217-227 p.Article in journal (Refereed) Published
Abstract [en]

Cationic polyallylamine (PAH) and cationic starch were adsorbed to unbleached softwood kraft pulp fibres in order to study the effect of these additives on the creep properties of the resulting paper sheets. For the fibres treated with PAH, the effect of molecular mass, adsorbed quantity and heat treatment of the prepared sheets at 160 degrees C was also studied. PAH was found to not influence the sheet density, whereas starch addition induced moderate densification. Both additives produced major improvements in dry strength measurements as stress and strain-at-break. PAH-treated sheets also showed a relatively small but statistically significant improvement in tensile stiffness, unlike starch-treated sheets in which the improvement was too small to be statistically significant. As expected. there was an inverse relationship between the adsorbed amount and the molecular mass of the PAH. However, for comparable adsorbed amounts, the molecular mass made no detectable difference to the mechanical properties. PAH was also labelled with fluorescein isothiocyanate and adsorbed to the pulp fibres. Examination of the fibres with a confocal scanning laser microscope revealed that the different molecular mass fractions adsorbed only to the exterior parts of the fibres (i.e. the molecules did not penetrate throughout the fibre wall). The creep behaviour of the paper sheets was evaluated under tensile loading using a specially designed testing apparatus, in both 50% RH and 90% RH at 23 degrees C. Strain was monitored as function of time and applied load. PAH was found to lower both instantaneous and time-dependent deformation during the relatively short measuring time of 100 seconds used in this work. Cationic starch had little or no effect on creep. Thus it is clearly demonstrated that PAH treatment of fibres results in sheets with a lower creeping tendency over short periods compared to sheets made with non-treated and starch-treated fibres.

Place, publisher, year, edition, pages
2007. Vol. 22, no 2, 217-227 p.
Keyword [en]
creep; mechanical properties; polyallylamine; cationic starch; confocal fluorescence microscopy
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:kth:diva-7717DOI: 10.3183/NPPRJ-2007-22-02-p217-227ISI: 000248057800011Scopus ID: 2-s2.0-34547345846OAI: oai:DiVA.org:kth-7717DiVA: diva2:12825
Note
QC 20100616Available from: 2007-11-25 Created: 2007-11-25 Last updated: 2010-08-11Bibliographically approved
In thesis
1. Influence of adsorbed polyelectrolytes and adsorption conditions on creep properties of paper sheets made from unbleached kraft pulp
Open this publication in new window or tab >>Influence of adsorbed polyelectrolytes and adsorption conditions on creep properties of paper sheets made from unbleached kraft pulp
2007 (English)Licentiate thesis, comprehensive summary (Other scientific)
Abstract [sv]

Papper uppvisar betydande tidsberoende mekaniska egenskaper som krypning och spänningsrelaxation. Det är känt att krypningen hos pappret påverkar till exempel en wellpapplådas förmåga att bära last under lång tid. En möjlighet att tillverka papper som kryper långsammare är därför önskvärd. Polyelektrolyter används ofta för att öka styrkan hos papper, och skulle kanske också kunna användas till att minska papprets krypning. Inverkan av polymera additiv på pappers krypegenskaper är emellertid knapphändigt beskrivet i litteraturen. Existerande studier har visat att polymera additiv inte påverkar krypningen hos starka papper och att fiberväggarna och fiber/fiber fogarna har fundamentalt olika betydelse för krypegenskaperna.

Avsikten med denna avhandling var att undersöka hur adsorberade polyelektrolyter påverkar krypegenskaperna hos pappret. Ett av huvudsyftena var att studera om adsorptionen av en katjonisk polyelektrolyt – polyallylamin – endast till fiberytan eller tvärs hela fiberväggen ger olika effekt på krypningen hos papper tillverkade av dessa fibrer.

En ny teknik där polyelektrolyten märks med en fluorescerande markör gör det möjligt att visualisera var i fibern de adsorberade molekylerna befinner sig. Resultaten visar att adsorption vid låg jonstyrka under kort tid bara ger adsorption till de yttre delarna av fiberväggen. Hög jonstyrka och lång adsorptions tid resulterar å andra sidan i adsorption tvärs hela fiberväggen. Med hjälp av denna teknik blev det också möjligt att klarlägga vilken inverkan polyelektrolytens läge i fiberväggen har på de slutgiltiga arkens mekaniska egenskaper.

Krypprovning av de tillverkade arken visade tydligt att polyallylamin som endast adsorberat till fibrernas yttre delar minskade krypningen vid både 50 % och 90 % relativ luftfuktighet. Den uppnådda effekten visade sig dock bero på vilken typ av fibrer arken tillverkades av. Adsorption av katjoniserad stärkelse till fibrernas yta gav ingen nämnvärd effekt på arkens krypegenskaper, detta trots att stärkelse gav lika hög arkstyrka som polyallylamin.

När polyallylamin adsorberades tvärs igenom fibrerväggen ökade krypningen vid 90 % relativ luftfuktighet väsentligt. Detta föreslås bero på att den adsorberade polyelektrolyten avsväller fibrerna vilket ger färre fiber/fiber kontakter och därmed en sämre fördelning av mekanisk last i arken. Det var emellertid inte möjligt att dra några definitiva slutsatser angående mekanismerna bakom de observerade skillnaderna i krypegenskaper.

Abstract [en]

Paper materials exhibit a significant time-dependent mechanical behaviour, such as creep and stress-relaxation. It is known that the creep of the paper affects the performance of corrugated boxes. The production of a paper having a lower creep rate is therefore desirable. Polyelectrolytes commonly used to increase the strength of paper could be an alternative for improving the creep properties. The influence of polymeric additives on the creep properties of paper is, however, poorly described in the literature. Published studies have shown that polymeric additives do not affect the creep behaviour of fully efficiently loaded paper sheets and that the fibre cell walls and the fibre/fibre joints have fundamentally different effects on the creep behaviour.

The aim of the present thesis was to examine the influence of adsorbed polyelectrolytes on the creep behaviour of paper sheets made from the modified fibres. One of the main objectives was to establish whether there is a difference in effect on creep properties between adsorbing a cationic polyelectrolyte – polyallylamine – to the fibre surfaces or throughout the fibre cell walls.

A technique which includes the labelling of polyelectrolytes with a fluorescent dye and microscopy of single fibres provided a visual record of the localisation of the adsorbed polyelectrolyte. This method showed that a low ionic strength and a short adsorption time resulted in adsorption of the polyelectrolyte only to the external parts of the fibres. A high ionic strength and a long adsorption time on the other hand, resulted in adsorption throughout the fibre walls. This made it possible to study the relationship between the mechanical properties of the sheets and the localisation of the adsorbed polyelectrolyte.

Creep testing of the sheets showed that the adsorption of polyallylamine to the exterior parts of fibres decreased the creep at both 50% and 90% RH. The effect depended, however, on the type of fibre used. Adsorption of cationic starch to the fibres gave no significant reduction in creep rate, despite the fact that starch and polyallylamine had similar effect on the paper strength.

When polyallylamine was adsorbed into the fibre cell walls, the creep at 90% RH increased. It is suggested that this was due to a deswelling of the fibres by the adsorbed polyelectrolyte, which resulted in fewer fibre/fibre contact points and hence a less efficient distribution of stresses in the sheet. It was not, however, possible to draw any definitive conclusions about the mechanisms behind the observed differences in creep behaviour.

Place, publisher, year, edition, pages
Stockholm: KTH, 2007. 38 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2007:70
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-4553 (URN)
Presentation
2007-11-23, STFI-salen, KTH, Drottning Kristinas väg 61, Stockholm, 10:00
Opponent
Supervisors
Note
QC 20101105Available from: 2007-11-25 Created: 2007-11-25 Last updated: 2010-11-05Bibliographically approved
2. Influence of fibre modification on moisture sorption and the mechanical properties of paper
Open this publication in new window or tab >>Influence of fibre modification on moisture sorption and the mechanical properties of paper
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fibre modification might be a way to improve the performance of paper, to increase its cost competiveness and enable new paper-based products to be developed. Therefore, the influence of fibre modification (with polyelectrolytes or by fibre cross-linking) on the mechanical properties of special importance for packaging paper grades was studied.

Creep deformation under varying humidity conditions (i.e. mechano-sorptive creep) is of outmost importance for the stacking life of paper-based boxes. The influence on creep behaviour of adsorbing polyallylamine (a cationic polyelectrolyte) to fibre surfaces or throughout the fibre walls was studied. Adsorption to fibre surfaces reduced the creep at constant humidity. The mechano-sorptive creep was not however influenced. The use of polyelectrolytes did not thus appear to be a feasible strategy for reducing mechano-sorptive creep.

Polyelectrolytes can however be efficient in improving other mechanical properties. The use of multilayers consisting of polyallylamine (PAH) and polyacrylic acid (PAA) was for example shown to significantly increase the strength of paper with much less densification and build-up of residual stress than is obtained by beating.

Cross-linking by oxidation with periodate radically decreased the mechano-sorptive creep of sheets made from the oxidised fibres. The basic mechanism behind the reduction in mechano-sorptive with cross-linking was found to be that the cross-linking slowed down the moisture sorption kinetics. A lower sorption rate led to smaller moisture content variations during the mechano-sorptive creep testing, and thus less sorption-induced swelling and stress concentrations at fibre/fibre joints. However, for cross-linking to be a practical way to reduce creep, the large problem of embrittlement must be solved.

The shear strength of couched sheets was measured to study the interaction between the sheets at different solids content. The shear strength was low until a solids content of approximately 60−70% was reached, which suggests that interactions important for the strength at complete dryness start to develop at this solids content. The effect of different fibre modifications and additives on how the fibres interact during the consolidation process is not always well understood. The method of shear strength determination could in the future be applied to modified fibres to hopefully increase the understanding of how different modifications influence the fibre/fibre interactions. A deeper understanding might reduce the time for the development of new and improved fibre modifications.

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. 84 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2010:11
Identifiers
urn:nbn:se:kth:diva-12318 (URN)978-91-7415-606-5 (ISBN)
Public defence
2010-04-23, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC20100616Available from: 2010-04-09 Created: 2010-04-07 Last updated: 2010-06-16Bibliographically approved
3. Chemical Methods for Improving the Fracture Toughness of Paper
Open this publication in new window or tab >>Chemical Methods for Improving the Fracture Toughness of Paper
2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Paper is a network material composed of a great number of fibers that interact with each other through fiber joints. In order to make a clear statement regarding observed changes being made in paper, it is vital to determine the structural level of paper that is being affected by chemical modifications. Polyelectrolytes having a wide range in molecular properties have been synthesized to investigate the adsorption behavior of cationic polyelectrolytes to cellulosic fibers. The interaction with the porous cell wall of cellulosic fibers is governed by the molecular properties of the polyelectrolyte. More specifically, polyelectrolytes having a low charge density are able to penetrate into the fiber cell wall, while high charge density polyelectrolytes are restricted to the exterior fiber surface. The molecular mass also influences the extent to which adsorption occurs within the cell wall, although this is typically only pronounced for low charge density polyelectrolytes. High charge density polyelectrolytes are generally restricted to the fiber surface due to strong Coulombic interactions between charged groups along the molecular backbone, which create a stiff molecular conformation.

These results were confirmed by fluorescent labeling techniques, which allow the polyelectrolytes to be tracked inside the cell wall by confocal laser scanning microscopy. This approach was also used to demonstrate the effect of an electrolyte, which screens the Coulombic interactions and facilitates penetration into the cell wall. However, a considerable difference in the adsorption behavior of polyelectrolytes having similar molecular mass is still observed at high electrolyte concentration, where the electrostatic contributions are negligible. These differences are a consequence of a diffusion process that occurs on a longer times scale. Although polyelectrolyte adsorption to cellulosic fibers reaches a pseudo-equilibrium at short times, a driving force into the cell wall exists due to the bulk charge of the fiber. The time scale of this diffusion process depends on the polyelectrolyte properties, and was observed to persist for over 3 months.

As the extent to which these polyelectrolytes penetrate into the cell wall has been ascertained, and the fibers can be crosslinked to different degrees in the cell wall or at the surface. Cationic acetal dextran was prepared as a model crosslinking agent, as the molecular mass, charge density and degree of acetal substitution can readily be controlled during synthesis. A considerable effect on the tensile properties and fracture toughness was observed for crosslinked paper, which could be attributed to either the fibers or the fiber joints. Crosslinking acted to stiffen the fibers and the fiber joints, which influenced the transfer of applied stresses through the paper structure. Changes in the material behavior at high relative humidity could be improved by crosslinking the fibers at the correct the structural level.

Place, publisher, year, edition, pages
Stockholm: KTH, 2008. 112 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2008:28
Keyword
chemistry, physical chemistry
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-4752 (URN)978-91-7178-968-6 (ISBN)
Public defence
2008-05-30, F3, KTH, Lindstedtsvägen 26, Stockholm, 10:00
Opponent
Supervisors
Note
QC 20100811Available from: 2008-05-15 Created: 2008-05-15 Last updated: 2010-08-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Wågberg, Lars

Search in DiVA

By author/editor
Gimåker, MagnusHorvath, AndrewWågberg, Lars
By organisation
Fibre Technology
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 203 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf