Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H-2
Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei, Anhui, Peoples R China.;Univ Sci & Technol China, Dept Chem Phys, Hefei, Anhui, Peoples R China..
Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei, Anhui, Peoples R China..
Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei, Anhui, Peoples R China.;Univ Sci & Technol China, Dept Chem Phys, Hefei, Anhui, Peoples R China..
Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei, Anhui, Peoples R China.;Univ Sci & Technol China, Dept Chem Phys, Hefei, Anhui, Peoples R China..
Show others and affiliations
2019 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 565, no 7741, p. 631-635Article in journal (Refereed) Published
Abstract [en]

Proton-exchange-membrane fuel cells (PEMFCs) are attractive next-generation power sources for use in vehicles and other applications(1), with development efforts focusing on improving the catalyst system of the fuel cell. One problem is catalyst poisoning by impurity gases such as carbon monoxide (CO), which typically comprises about one per cent of hydrogen fuel(2-4). A possible solution is on-board hydrogen purification, which involves preferential oxidation of CO in hydrogen (PROX)(3-7). However, this approach is challenging(8-15) because the catalyst needs to be active and selective towards CO oxidation over a broad range of low temperatures so that CO is efficiently removed (to below 50 parts per million) during continuous PEMFC operation (at about 353 kelvin) and, in the case of automotive fuel cells, during frequent cold-start periods. Here we show that atomically dispersed iron hydroxide, selectively deposited on silica-supported platinum (Pt) nanoparticles, enables complete and 100 per cent selective CO removal through the PROX reaction over the broad temperature range of 198 to 380 kelvin. We find that the mass-specific activity of this system is about 30 times higher than that of more conventional catalysts consisting of Pt on iron oxide supports. In situ X-ray absorption fine-structure measurements reveal that most of the iron hydroxide exists as Fe-1(OH)(x) clusters anchored on the Pt nanoparticles, with density functional theory calculations indicating that Fe-1(OH)(x)-Pt single interfacial sites can readily react with CO and facilitate oxygen activation. These findings suggest that in addition to strategies that target oxide-supported precious-metal nanoparticles or isolated metal atoms, the deposition of isolated transition-metal complexes offers new ways of designing highly active metal catalysts.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP , 2019. Vol. 565, no 7741, p. 631-635
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-244110DOI: 10.1038/s41586-018-0869-5ISI: 000457404000045PubMedID: 30700869Scopus ID: 2-s2.0-85060888174OAI: oai:DiVA.org:kth-244110DiVA, id: diva2:1289760
Funder
Knut and Alice Wallenberg Foundation, 2012.0321Swedish Research Council, 2015-04062
Note

QC 20190219

Available from: 2019-02-19 Created: 2019-02-19 Last updated: 2019-02-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Weissenrieder, Jonas

Search in DiVA

By author/editor
Weissenrieder, JonasSoldemo, Markus
By organisation
School of Engineering Sciences (SCI)
In the same journal
Nature
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 84 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf