Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
AN ENGINEERING NON-LINEAR MODEL FOR THERMO-ACOUSTIC ENGINES
KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).ORCID iD: 0000-0001-7898-8643
2015 (English)In: PROCEEDINGS OF THE 22ND INTERNATIONAL CONGRESS ON SOUND AND VIBRATION: MAJOR CHALLENGES IN ACOUSTICS, NOISE AND VIBRATION RESEARCH, 2015 / [ed] Crocker, MJ Pawelczyk, M Pedrielli, F Carletti, E Luzzi, S, INT INST ACOUSTICS & VIBRATION , 2015Conference paper, Published paper (Refereed)
Abstract [en]

A thermoacoustic engine is a device converting thermal energy into high amplitude acoustic waves that can be harvested, for example, to electricity. For the practical application of this technique it is vital to identify optimum design parameters and operating conditions. There are numerous reports and tools based on the application of the well-established linear theory first derived by Rott. This is useful for determining the working frequency and yields a first indication of the amplification potential of a given design, but cannot predict the saturation amplitude that is limited by non-linear loss mechanisms. In this work an engineering approach for estimating the final output power of a device is discussed. It is assumed that the fundamental mode of the device is dominating, neglecting the loss of acoustic energy into the harmonics. The core of the engine (heat exchangers and stack/regenerator) is represented as an amplitude-dependent acoustic two port in the frequency domain. To close the system the duct network and acoustic load are treated similarly as the core; all parts are then connected to form a low-order acoustic network. One major difficulty is to represent the non-linear losses in the duct network. Here they are lumped and matched to available data in the literature. Starting at a moderate amplitude, the model is then iterated until the amplification is balanced with the losses in the system. At this stage of balance, the saturation pressure is obtained and the final output acoustic power to the acoustic load is found. Subsequently, parameter studies such as frequency sweeps and altering of the phase of the incoming pressure waves are carried out, to note their effect on the system efficiency.

Place, publisher, year, edition, pages
INT INST ACOUSTICS & VIBRATION , 2015.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-243734ISI: 000398997004023OAI: oai:DiVA.org:kth-243734DiVA, id: diva2:1291743
Conference
22nd International Congress on Sound and Vibration 2015 (ICSV 22), Florence, Italy 12-16 July 2015
Note

QC 20190226

Available from: 2019-02-26 Created: 2019-02-26 Last updated: 2019-05-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Karlsson, MikaelÅbom, Mats

Search in DiVA

By author/editor
Lalit, MananKarlsson, MikaelÅbom, Mats
By organisation
Competence Center for Gas Exchange (CCGEx)Aeronautical and Vehicle Engineering
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf