Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Robust Experiment Design for Virtual Reference Feedback Tuning
Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Via Ponzio 34-5, I-20133 Milan, Italy..
Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Via Ponzio 34-5, I-20133 Milan, Italy..
KTH, School of Electrical Engineering and Computer Science (EECS), Automatic Control.ORCID iD: 0000-0003-0355-2663
Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Via Ponzio 34-5, I-20133 Milan, Italy..
2018 (English)In: 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), IEEE , 2018, p. 2271-2276Conference paper, Published paper (Refereed)
Abstract [en]

This paper deals with robust experiment design for the Virtual Reference Feedback Tuning (VRFT) approach, a non-iterative control design method aimed to tune fixed-order controllers directly from experimental data, without the need for a model of the plant. In a previous contribution, it has been shown that the spectrum of the optimal input depends on the frequency response of the controller achieving the desired performance. In this work, a robust input design procedure is proposed, which requires only mild prior knowledge about the optimal controller. The solution is obtained analytically via constrained min-max optimization. Simulation results on a benchmark case study for digital control systems show the effectiveness of the proposed approach.

Place, publisher, year, edition, pages
IEEE , 2018. p. 2271-2276
Series
IEEE Conference on Decision and Control, ISSN 0743-1546
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-245003DOI: 10.1109/CDC.2018.8619732ISI: 000458114802022Scopus ID: 2-s2.0-85062192771ISBN: 978-1-5386-1395-5 (print)OAI: oai:DiVA.org:kth-245003DiVA, id: diva2:1293714
Conference
57th IEEE Conference on Decision and Control (CDC), DEC 17-19, 2018, Miami Beach, FL
Note

QC 20190305

Available from: 2019-03-05 Created: 2019-03-05 Last updated: 2019-04-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Rojas, Cristian R.

Search in DiVA

By author/editor
Rojas, Cristian R.
By organisation
Automatic Control
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf