Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quantifying water transport in anion exchange membrane fuel cells
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
Show others and affiliations
2019 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 44, no 10, p. 4930-4939Article in journal (Refereed) Published
Abstract [en]

Sufficient water transport through the membrane is necessary for a well-performing anion exchange membrane fuel cell (AEMFC). In this study, the water flux through a membrane electrode assembly (MEA), using a Tokuyama A201 membrane, is quantified using humidity sensors at the in- and outlet on both sides of the MEA. Experiments performed in humidified inert gas at both sides of the MEA or with liquid water at one side shows that the aggregation state of water has a large impact on the transport properties. The water fluxes are shown to be approximately three times larger for a membrane in contact with liquid water compared to vaporous. Further, the flux during fuel cell operation is investigated and shows that the transport rate of water in the membrane is affected by an applied current. The water vapor content increases on both the anode and cathode side of the AEMFC for all investigated current densities. Through modeling, an apparent water drag coefficient is determined to −0.64, indicating that the current-induced transport of water occurs in the opposite direction to the transport of hydroxide ions. These results implicate that flooding, on one or both electrodes, is a larger concern than dry-out in an AEMFC.

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 44, no 10, p. 4930-4939
Keywords [en]
Anion exchange membrane fuel cell, Fuel cells, Relative humidity sensor, Water transport model
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:kth:diva-244325DOI: 10.1016/j.ijhydene.2018.12.185ISI: 000459837700036Scopus ID: 2-s2.0-85060083256OAI: oai:DiVA.org:kth-244325DiVA, id: diva2:1294014
Note

QC 20190306

Available from: 2019-03-06 Created: 2019-03-06 Last updated: 2019-10-03Bibliographically approved
In thesis
1. Electrochemical evaluation of new materials in polymer electrolyte fuel cells
Open this publication in new window or tab >>Electrochemical evaluation of new materials in polymer electrolyte fuel cells
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Polymer electrolyte fuel cells (PEFC) convert the chemical energy in hydrogen to electrical energy and heat, with the only exhaust being water. Fuel cells are considered key in achieving a sustainable energy sector. The main obstacles to wide scale commercialization are cost and durability. The aim of this thesis is to evaluate new materials for PEFC to potentially lower cost and increase durability. To lower the amount of expensive platinum catalyst in the fuel cell, the activities of Pt-rare earth metal (REM) alloy catalysts have been tested. To improve the lifetime of the carbon support, the carbon corrosion properties of multi walled carbon nanotubes have been evaluated. To reduce the overall cost of fuel cell stacks, carbon coated and metal coated bipolar plates have been tested. To increase the performance and lifetime of anion exchange membranes, the water transport has been studied.

The results show that the Pt-REM catalysts had at least two times higher specific activity than pure platinum, and even higher activities should be obtainable if the surface structures are further refined.

Multi-walled carbon nanotubes had lower carbon corrosion than conventional carbon Vulcan XC-72. However, once severely corroded their porous structure collapsed, causing major performance losses.

The carbon coated metallic bipolar plates showed no significant increase of internal contact resistance (ICR) by cycling, suggesting that these coatings are stable in fuel cells. The NiMo- and NiMoP coated bipolar plates showed low ICR, however, presence of the coated bipolar plates caused secondary harmful effects on the polymer membrane and ionomer.

Considering the water transport through anion exchange membranes it was found that most membranes showed very similar water transport properties, with more water detected at both the anode and cathode when a current was applied. The most significant factor governing the water transport properties was the membrane thickness, with thicker membranes reducing the backflow of water from anode to cathode.

The results indicate that all of the new tested materials have the capability to improve the lifetime and reduce cost and thereby improve the overall performance of PEFC.

Abstract [sv]

Polymerelektrolytbränsleceller (PEFC) omvandlar den kemiskt bundna energin i vätgas till elektrisk energi och värme, med endast vatten som utsläpp. Bränsleceller ses som en viktig del i att skapa en hållbar energisektor. Det största hindret för kommersialisering är kostnaden och den begränsande livslängden. Syftet med denna avhandling är att utvärdera nya material som skulle kunna sänka kostnaden och öka hållbarheten av PEFC. För att minska mängden dyr platinakatalysator i bränslecellen har aktiviteten av legerade katalysatorer av platina och sällsynta jordartsmetaller testats. För att öka livslängden av bränslecellen har kolkorrosionsegenskaperna av flerväggade kolnanorör (MWCNT) utvärderats. För att kunna minska den totala kostnaden på bränslecellsstacken har kol- och metallbelagda bipolära plattor undersökts. För att öka livslängden och öka prestandan av anjonledande membran har vattentransportegenskaperna av dessa membran studerats.

Resultaten visar att de legerade katalysatorerna hade mer än två gånger högre elektrokemisk aktivitet än ren platina. Ännu högre elektrokemiska aktiviteter bör kunna erhållas om ytstrukturen kan förbättra ytterligare.

För MWCNT var kolkorrosionen lägre än för de konventionella kolpartiklarna av Vulcan XC-72. Efter mycket korrosion, kollapsade dock den porösa strukturen, vilket ledde till stora förluster i prestanda.

De kolbelagda bipolära plattorna uppvisade inga signifikanta ändringar i kontaktmotstånd (ICR) efter de elektrokemiska testerna. Detta betyder att de är stabila i bränsleceller. De NiMo- och NiMoP-belagda bipolära plattorna hade låga ICR-värden, dock ledde beläggningens närvaro till försämringar av membran- och elektrodegenskaper.

Alla testade anjonledande membran uppvisade liknande vattentransportegenskaper, med ökning av vatten på både anoden och katoden under drift. Membranens tjocklek visade sig ha störst påverkan på vattentransporten. Med tjockare membran detekterades mindre vatten på katoden, vilket betyder att tillbakaflödet av vatten hämmas av membranets tjocklek.

Sammanfattningsvis visar resultaten att alla nya testade material i alla fall till viss del kan lösa problemen med den höga kostnaden och korta livslängden och därmed öka den totala prestandan av PEFC.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 66
Series
TRITA-CBH-FOU ; 2019:50
Keywords
Fuel cell, Pt-REM, Alloy catalyst, Multi walled carbon nanotubes, Bipolar plates, Water transport, Bränslecell, Pt-REM, Legerad katalysator, Flerväggade kolnanorör, Bipolära plattor, Vattentransport
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-261102 (URN)978-91-7873-326-2 (ISBN)
Public defence
2019-11-05, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2019-10-04

Available from: 2019-10-04 Created: 2019-10-03 Last updated: 2019-10-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Eriksson, BjörnGrimler, HenrikEkström, HenrikLindbergh, Göran

Search in DiVA

By author/editor
Eriksson, BjörnGrimler, HenrikCarlson, AnnikaEkström, HenrikWreland Lindström, RakelLindbergh, GöranLagergren, Carina
By organisation
Applied Electrochemistry
In the same journal
International journal of hydrogen energy
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 145 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf