Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Semiconductor-ionic Materials for Low Temperature Solid Oxide Fuel Cells
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0001-8244-6572
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Solid oxide fuel cell (SOFC) is considered as an attractive candidate for energy conversion within the fuel cell (FC) family due to several advantages including environment friendly, use of non-noble materials and fuel flexibility. However, due to high working temperatures, conventional SOFC faces many challenges relating to high operational and capital costs besides the limited selection of the FC materials and their compatibility issues. Recent SOFC research is focused on how to reduce its operational temperature to 700 ºC or lower. Investigation of new electrolytes and electrode materials, which can perform well at low temperatures, is a comprehensive route to lowering the working temperature of SOFC. Meanwhile, semiconductor-ionic materials based on semiconductors (perovskite/composite) and ionic materials (e.g. ceria based ion conductors) have been identified as potential candidates to operate in low temperature range with adequate SOFC power outputs.

This investigation focuses on the development of semiconductor-ionic materials for low temperature solid oxide fuel cell (SOFC) and electrolyte-layer free fuel cell (EFFC). The content of this work is divided into four parts:

First part of the thesis consists of the work on conventional SOFC to build knowledge and bridge from conventional SOFC to the new EFFC. Novel composite electrode (semiconductor) materials are synthesized and studied using established electrochemical and analytical methods such as x-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The phase structure, morphology and microstructure of the composite electrodes are studied using XRD and SEM, and the weight loss is determined using TGA. An electrical conductivity of up to 143 S/cm of as-prepared material is measured using DC 4 probe method at 550 ºC. An electrolyte, samarium doped ceria (SDC) is synthesized to fabricate a conventional three component SOFC device. The maximum power density of 325 mW/cm2 achieved from the conventional device at 550 ºC.

In the second part of the thesis, semiconductor-ionic materials based on perovskite and composite materials are prepared for low temperature SOFC and EFFC devices. Semiconductor-ionic materials are prepared via nanocomposite approach based on two-phase semiconductor electrode and ionic electrolyte. This semiconductor-ionic functional component was shown to integrate all fuel cell components anode, electrolyte and cathode functions into a single component, i.e. “three in one”, resulting in enhanced catalytic activity and improved SOFC performance.

The third part of the thesis addresses the development and optimization of the EFFC technologies by studying the Schottky junction mechanism in such semiconductor-ionic type devices. Perovskite and functional nanocomposites (semiconductor-ionic materials) are developed for EFFC devices. Materials characterizations are performed using a number of standard experimental and analytical techniques. Maximum power densities from 600 mW/cm2 up to 800 mW/cm2 have been achieved at 600 ºC.

Fourth part of the thesis describes the theoretical simulation of EFFCs. In this work, an updated numerical model is applied in order to study the EFFC device, which introduces some modifications to the existing relations for traditional fuel cell models. The simulated V-I and P-I curves have been compared with experimental curves, and both types of curves show a good consistency.

Abstract [sv]

Bränsleceller av typen fastoxid (SOFC) anses vara en attraktiv kandidat för energiomvandling bland bränsleceller (FC) beroende på flera fördelar som bl.a. miljövänlighet, användning av icke-ädla material och deras bränsleflexibilitet. På grund av hög driftstemperatur står dock konventionella SOFC inför många utmaningar. Bland dessa finns höga drifts- och kapitalkostnader samt det begränsade urvalet av FC-material och relaterade kompatibilitetsproblem. En trend inom SOFC-forskning är inriktning på hur man sänker driftstemperaturen åtminstone till 700 ºC eller lägre. Undersökning av nya elektrolyt- och elektrodmaterial som kan fungera bra vid låga temperaturer är en mödosam väg för att sänka SOFCs arbetstemperatur. Som alternativ finns halvledande-jonledande material som är baserade på perovskit/komposit- och jonledande material. Dessa är potentiella kandidater att arbeta i ett lågt temperaturområde med tillräckliga SOFC-prestanda.

Denna forskning fokuserar på utveckling av halvledar-joniska material för lågtemperatur-solid oxid bränsleceller och elektrolytskikt-fria bränsleceller (EFFC). Detta arbete är indelat i fyra delar:

Den första delen av avhandlingen handlar om arbetet med konventionell SOFC för att bygga kunskap och att överbrygga från konventionell SOFC till det nya EFFC. Nya halvledande kompositelektrodmaterial syntetiseras och studeras med hjälp av etablerade elektrokemiska och analytiska metoder, såsom röntgendiffraktion (XRD), scanning-elektronmikroskopi (SEM) och termogravimetrisk analys (TGA). Fasstrukturen, morfologin och mikrostrukturen hos kompositelektroderna studeras med användning av XRD och SEM, och viktminskningen bestäms med användning av TGA. En elektrisk ledningsförmåga på 143 S/cm av sådant framställt material har uppmätts med användning av DC 4-sond-metoden vid 550 ºC. En elektrolyt, Samarium-dopad Ceriumoxid (SDC) syntetiseras för att tillverka en konventionell SOFC-enhet baserad på tre komponenter. En maximal effekttäthet på 325 mW/cm2 har uppnåtts från den konventionella enheten vid 550 ºC.

I andra delen av avhandlingen är halvledarjoniska material baserade på perovskit och kompositmaterial förberedda för SOFC- och EFFC-enheter med låg temperatur. Halvledar-joniska material har konstruerats genom att skapa en komposit av nano-partiklar (nanokomposit) baserat på halvledarelektrod och elektrolyt i olika kristallina faser som kombineras i en tvåfas-struktur. Denna halvledar-joniska funktionella komponent har visats integrera alla anod-, elektrolyt- och katodfunktioner i bränslecellkomponenterna i en enda komponent, dvs "tre i en", vilket resulterade i förbättrad katalytisk aktivitet och förbättrad SOFC-prestanda.

Tredje delen av avhandlingen tar upp utvecklingen och optimeringen av EFFC-tekniken genom att studera Schottky-kopplingsmekanismen i sådana anordningar av halvledar-jonisk typ. Perovskit och funktionella nanokompositer (halvledar-joniska material) har utvecklats för EFFC-enheter. Materialkarakteriseringar utförs med användning av ett antal standardiserade experimentella och analytiska metoder. En maximal effekttäthet från 600 mW/cm2 upp till och 800 mW/cm2 har uppnåtts vid 600 ºC.

Den fjärde delen av avhandlingen beskriver den teoretiska simuleringen av EFFCs. I detta arbete tillämpas en uppdaterad numerisk modell för att studera EFFC-enheten som introducerar vissa modifieringar av de rådande sambanden i traditionella bränslecellsmodeller. De simulerade V-I- och P-I-kurvorna har jämförts med experimentella kurvor, och båda typerna av kurvor visar god samstämmighet.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2019. , p. 92
Series
TRITA-ITM-AVL ; 2019:7
Keywords [en]
Semiconductor-ionic materials; electrolyte-layer free fuel cell; low temperature solid oxide fuel cell; fuel to electricity conversion; Schottky junction; theoretical and experimental curves
Keywords [sv]
Halvledar-joniska material; elektrolytskikt-fri bränslecell; lågtemperatur fastoxidbränslecell; bränsle till elomvandling; Schottky junction; teoretiska och experimentella kurvor
National Category
Engineering and Technology
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-245185ISBN: 978-91-7873-132-9 (print)OAI: oai:DiVA.org:kth-245185DiVA, id: diva2:1294180
Public defence
2019-03-29, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2019-03-06 Created: 2019-03-06 Last updated: 2019-03-06Bibliographically approved
List of papers
1. Synthesis of Ba0.3Ca0.7Co0.8Fe0.2O3-δ composite material as novel catalytic cathode for ceria-carbonate electrolyte fuel cells
Open this publication in new window or tab >>Synthesis of Ba0.3Ca0.7Co0.8Fe0.2O3-δ composite material as novel catalytic cathode for ceria-carbonate electrolyte fuel cells
Show others...
2015 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 178, p. 385-391Article in journal (Refereed) Published
Abstract [en]

This work reports a new composite BaxCa1-xCoyFe1-yO3-delta (BCCF) cathode material for advanced and low temperature solid oxide fuel cells (SOFCs). The BCCF-based composite material was synthesized by sol gel method and investigated as a catalytic cathode for low temperature (LT) SOFCs. XRD analysis of the as-prepared material revealed the dominating BCCF perovskite structure as the main phase accompanied with cobalt and calcium oxides as the secondary phases resulting into an overall composite structure. Structure and morphology of the sample was observed by Field Emission Scanning Electron Microscope (FE-SEM). In particular, the Ba0.3Ca0.7Co0.8Fe0.2O3-delta (BCCF37) showed a maximum conductivity of 143 S cm(-1) in air at 550 degrees C measured by DC 4 probe method. The BCCF at the optimized composition exhibited much higher electrical conductivities than the commercial Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) perovskite cathode material. A maximum power density of 325 mW cm(-2) at 550 degrees C is achieved for the ceria-carbonate electrolyte fuel cell with BCCF37 as the cathode material.

Place, publisher, year, edition, pages
Pergamon Press, 2015
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-174590 (URN)10.1016/j.electacta.2015.07.183 (DOI)000361560300046 ()2-s2.0-84939526357 (Scopus ID)
Funder
Swedish Research Council, 621-2011-4983VINNOVA, P36545-1
Note

QC 20151207

Available from: 2015-12-07 Created: 2015-10-07 Last updated: 2019-03-06Bibliographically approved
2. Lanthanum-doped Calcium Manganite (La0.1Ca0.9MnO3) Cathode for Advanced Solid Oxide Fuel Cell (SOFC)
Open this publication in new window or tab >>Lanthanum-doped Calcium Manganite (La0.1Ca0.9MnO3) Cathode for Advanced Solid Oxide Fuel Cell (SOFC)
2016 (English)In: MATERIALS TODAY-PROCEEDINGS, ELSEVIER SCIENCE BV , 2016, Vol. 3, no 8, p. 2698-2706Conference paper, Published paper (Refereed)
Abstract [en]

We present here a new perovskite oxide with low lanthanum content doped in calcium manganite, La0.1Ca0.9MnO3 (LCM) as a functional material for low temperature solid oxide fuel cell (LTSOFC) and electrolyte-layer free fuel cell (EFFC). The LCM introduces an intrinsic mixed-ion and electron conduction. Electrochemical impedance spectroscopy (EIS) analysis shows high oxygen reduction reaction (ORR) activity with an extremely low activation energy which enables an excellent cathode activity. Fuel cells using LCM as cathode with oxide ion conducting electrolyte samarium doped ceria (SDC) and NCAL as an anode, demonstrate a maximum power density of 650 mW cm(-2) at 550 degrees C, which is higher than most of the cathode materials reported for SOFC at this temperature. For EFFC, maximum power density of 750 mW cm(-2) is achieved using LCM as a semiconductor material with SDC ion conducting material. The present work highlights the development of new active air electrode especially for developing low temperature solid oxide fuel cells.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV, 2016
Keywords
low temperature solid oxide fuel cell, mixed ion and electron conducting cathode, oxide ion conducting electrolyte
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-206329 (URN)10.1016/j.matpr.2016.06.014 (DOI)000398483700015 ()2-s2.0-84991575774 (Scopus ID)
Conference
6th International Conference on Advanced Nanomaterials (ANM), JUL 20-22, 2015, Univ Aveiro, Aveiro, PORTUGAL
Note

QC 20170504

Available from: 2017-05-04 Created: 2017-05-04 Last updated: 2019-03-06Bibliographically approved
3. La0.1SrxCa0.9-xMnO3-δ -Sm0.2Ce0.8O1.9 composite material for novel low temperature solid oxide fuel cells
Open this publication in new window or tab >>La0.1SrxCa0.9-xMnO3-δ -Sm0.2Ce0.8O1.9 composite material for novel low temperature solid oxide fuel cells
Show others...
2017 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 42, no 27, p. 17552-17558Article in journal (Refereed) Published
Abstract [en]

Lowering the operating temperature of the solid oxide fuel cells (SOFCs) is one of the world R&D tendencies. Exploring novel electrolytes possessing high ionic conductivity at low temperature becomes extremely important with the increasing demands of the energy conversion technologies. In this work, perovskite La0.1SrxCa0.9-xMnO3-δ (LSCM) materials were synthesized and composited with the ionic conductor Sm0.2Ce0.8O1.9 (SDC). The LSCM-SDC composite was sandwiched between two nickel foams coated with semiconductor

Ni0.8Co0.15Al0.05LiO2- δ (NCAL) to form the fuel cell device. The strontium content in theLSCM and the ratios of LSCM to SDC in the LSCM-SDC composite have significant effects on the electrical properties and fuel cell performances. The best performance has been achieved from LSCM-SDC composite with a weight ratio of 2:3. The fuel cells showed OCV over 1.0 V and excellent maximum output power density of 800 mW/cm2 at 550 ºC. Device processes and ionic transport processes were also discussed.

Place, publisher, year, edition, pages
Elsevier, 2017
Keywords
Perovskite ionic-conductor; composite material; Electrolyte; Low temperature SOFCs
National Category
Ceramics
Research subject
Energy Technology; Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-245070 (URN)10.1016/j.ijhydene.2017.05.158 (DOI)000406725500064 ()2-s2.0-85020691094 (Scopus ID)
Funder
Swedish Research Council, 621-2011-4983EU, FP7, Seventh Framework Programme, 303454
Note

QC 20190306

Available from: 2019-03-05 Created: 2019-03-05 Last updated: 2019-03-06Bibliographically approved
4. Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-delta- Sm0.2Ce0.8O1.9) and Schottky barrier
Open this publication in new window or tab >>Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-delta- Sm0.2Ce0.8O1.9) and Schottky barrier
Show others...
2016 (English)In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 328, p. 136-142Article in journal (Refereed) Published
Abstract [en]

Perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) is synthesized via a chemical co-precipitation technique for a low temperature solid oxide fuel cell (LTSOFC) (300-600 degrees C) and electrolyte-layer free fuel cell (EFFC) in a comprehensive study. The EFFC with a homogeneous mixture of samarium doped ceria (SDC): BSCF (60%:40% by weight) which is rather similar to the cathode (SDC: BSCF in 50%:50% by weight) used for a three layer SOFC demonstrates peak power densities up to 655 mW/cm(2), while a three layer (anode/ electrolyte/cathode) SOFC has reached only 425 mW/cm(2) at 550 degrees C. Chemical phase, crystal structure and morphology of the as-prepared sample are characterized by X-ray diffraction and field emission scanning electron microscopy coupled with energy dispersive spectroscopy. The electrochemical performances of 3-layer SOFC and EFFC are studied by electrochemical impedance spectroscopy (EIS). As-prepared BSCF has exhibited a maximum conductivity above 300 S/cm at 550 degrees C. High performance of the EFFC device corresponds to a balanced combination between ionic and electronic (holes) conduction characteristic. The Schottky barrier prevents the EFFC from the electronic short circuiting problem which also enhances power output. The results provide a new way to produce highly effective cathode materials for LTSOFC and semiconductor designs for EFFC functions using a semiconducting-ionic material.

Place, publisher, year, edition, pages
Elsevier, 2016
Keywords
Co-precipitation, Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF), LTSOFC, Electrolyte-layer free fuel cell (EFFC), Perovskite oxide, Semi-ionic conductor
National Category
Materials Chemistry Inorganic Chemistry Ceramics
Identifiers
urn:nbn:se:kth:diva-193795 (URN)10.1016/j.jpowsour.2016.07.093 (DOI)000383293400015 ()2-s2.0-84984850892 (Scopus ID)
Funder
EU, FP7, Seventh Framework Programme, TRISOFC_03042012Swedish Research Council, 621-2011-4983ÅForsk (Ångpanneföreningen's Foundation for Research and Development)
Note

QC 20161024

Available from: 2016-10-24 Created: 2016-10-11 Last updated: 2019-03-06Bibliographically approved
5. Schottky junction effect on high performance fuel cells based on nanocomposite materials
Open this publication in new window or tab >>Schottky junction effect on high performance fuel cells based on nanocomposite materials
Show others...
2015 (English)In: Advanced Energy Materials, ISSN 1614-6832, Vol. 5, no 8, article id 1401895Article in journal (Refereed) Published
Abstract [en]

A novel fuel cell device based on integrating the Schottky junction effect with the electrochemical principle is designed, constructed, and verified through experiments. It is found that the Schottky junction has a significant effect on the greatly enhanced device performance, and the fuel cell device incorporating the Schottky junction effect reaches a power output of 1000 mW cm-2 at 550 C.

Keywords
fuel cells, nanocomposites, Schottky junctions, synergy
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-166897 (URN)10.1002/aenm.201401895 (DOI)000353357600009 ()2-s2.0-84928206379 (Scopus ID)
Funder
Swedish Research Council, 621-2011-4983EU, FP7, Seventh Framework Programme, 303454VINNOVA
Note

QC 20150608

Available from: 2015-06-08 Created: 2015-05-21 Last updated: 2019-03-06Bibliographically approved
6. Semiconductor-ionic Membrane of LaSrCoFe-oxide-doped Ceria Solid Oxide Fuel Cells
Open this publication in new window or tab >>Semiconductor-ionic Membrane of LaSrCoFe-oxide-doped Ceria Solid Oxide Fuel Cells
Show others...
2017 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 248, p. 496-504Article in journal (Refereed) Published
Abstract [en]

A novel semiconductor-ionic La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF)-Sm/Ca co-doped CeO2 (SCDC) nanocomposite has been developed as a membrane, which is sandwiched between two layers of Ni0.8Co0.15Al0.05Li-oxide (NCAL) to construct semiconductor-ion membrane fuel cell (SIMFC). Such a device presented an open circuit voltage (OCV) above 1.0 V and maximum power density of 814 mW cm(-2) at 550 degrees C, which is much higher than 0.84 V and 300 mW cm(-2) for the fuel cell using the SCDC membrane. Moreover, the SIMFC has a relatively promising long-term stability, the voltage can maintain at 0.966 V for 60 hours without degradation during the fuel cells operation and the open-circuit voltage (OCV) can return to 1.06 V after long-term fuel cell operation. The introduction of LSCF electronic conductor into the membrane did not cause any short circuit but brought significant enhancement of fuel cell performances. The Schottky junction is proposed to prevent the internal electrons passing thus avoiding the device short circuiting problem.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD, 2017
Keywords
semiconductor-ionic membrane, solid oxide fuel cells, co-doped ceria, Schottky junction, short circuit
National Category
Other Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-214874 (URN)10.1016/j.electacta.2017.07.128 (DOI)000409525300055 ()2-s2.0-85026786096 (Scopus ID)
Note

QC 20171024

Available from: 2017-10-24 Created: 2017-10-24 Last updated: 2019-09-03Bibliographically approved
7. Analysis of a perovskite-ceria functional layer-based solid oxide fuel cell
Open this publication in new window or tab >>Analysis of a perovskite-ceria functional layer-based solid oxide fuel cell
Show others...
2017 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 42, no 27, p. 17536-17543Article in journal (Refereed) Published
Abstract [en]

A fuel cell based on a functional layer of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) composited samarium doped ceria (SDC) has been developed. The device achieves a peak power density of 640.4 mW cm(-2) with an open circuit voltage (OCV) of 1.04 Vat 560 degrees C using hydrogen and air as the fuel and oxidant, respectively. A numerical model is applied to fit the experimental cell voltage. The kinetics of anodic and cathodic reactions are modeled based on the measurements obtained by electrochemical impedance spectroscopy (EIS). Modeling results are in well agreement with the experimental data. Mechanical stability of the cell is also examined by using analysis with field emission scanning electron microscope (FESEM) associated with energy dispersive spectroscopy (EDS) after testing the cell performance.

Place, publisher, year, edition, pages
Elsevier, 2017
Keywords
Perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF), Samarium doped ceria (SDC), Solid oxide fuel cell, Functional layer, Numerical model
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-212943 (URN)10.1016/j.ijhydene.2017.05.024 (DOI)000406725500062 ()2-s2.0-85020138406 (Scopus ID)
Conference
2nd International Symposium on Catalytic Science and Technology in Sustainable Energy and Environment (EECAT), October 11-14, 2016, Tianjin, China
Funder
Swedish Research Council, 621-2011-4983
Note

QC 20170825

Available from: 2017-08-25 Created: 2017-08-25 Last updated: 2019-03-06Bibliographically approved
8. Nanotechnology Based Green Energy Conversion Devices with Multifunctional Materials at Low Temperatures
Open this publication in new window or tab >>Nanotechnology Based Green Energy Conversion Devices with Multifunctional Materials at Low Temperatures
Show others...
2017 (English)In: RECENT PATENTS ON NANOTECHNOLOGY, ISSN 1872-2105, Vol. 11, no 2, p. 85-92Article, review/survey (Refereed) Published
Abstract [en]

Background: Nanocomposites (integrating the nano and composite technologies) for advanced fuel cells (NANOCOFC) demonstrate the great potential to reduce the operational temperature of solid oxide fuel cell (SOFC) significantly in the low temperature (LT) range 300-600 degrees C. NANOCOFC has offered the development of multi-functional materials composed of semiconductor and ionic materials to meet the requirements of low temperature solid oxide fuel cell (LTSOFC) and green energy conversion devices with their unique mechanisms. Description: This work reviews the recent developments relevant to the devices and the patents in LTSOFCs from nanotechnology perspectives that reports advances including fabrication methods, material compositions, characterization techniques and cell performances. Conclusion: Finally, the future scope of LTSOFC with nanotechnology and the practical applications are also discussed.

Place, publisher, year, edition, pages
BENTHAM SCIENCE PUBL LTD, 2017
Keywords
Green energy, ionic materials, LTSOFC, multi-functional nanocomposites, NANOCOFC, nanotechnology, semiconductor-ionic material
National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-211627 (URN)10.2174/1872210510666161107085439 (DOI)000405614300002 ()2-s2.0-85027279316 (Scopus ID)
Funder
Swedish Research Council, 621-2011-4983EU, FP7, Seventh Framework Programme, 303454VINNOVA
Note

QC 20170810

Available from: 2017-08-10 Created: 2017-08-10 Last updated: 2019-03-06Bibliographically approved

Open Access in DiVA

Doctoral Thesis of Muhammad Afzal(2583 kB)173 downloads
File information
File name FULLTEXT01.pdfFile size 2583 kBChecksum SHA-512
0aaf55937ae25cdfa5af97f6d8606b53cfae7b55d18b6d14a28e6552c93390e1fab3d4de90fe168fd16de330a1891604d4f4ee24ad819705d5576ef45a385416
Type fulltextMimetype application/pdf

Authority records BETA

Afzal, Muhammad

Search in DiVA

By author/editor
Afzal, Muhammad
By organisation
Heat and Power Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 173 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 407 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf