Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modal and non-modal linear stability of Poiseuille flow through a channel with a porous substrate
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH Mech, SeRC Swedish eSci Res Ctr, SE-10044 Stockholm, Sweden..
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
Delft Univ Technol, Proc & Energy Dept, NL-2628 CB Delft, Netherlands..
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-4346-4732
2019 (English)In: European journal of mechanics. B, Fluids, ISSN 0997-7546, E-ISSN 1873-7390, Vol. 75, p. 29-43Article in journal (Refereed) Published
Abstract [en]

We present modal and non-modal linear stability analyses of Poiseuille flow through a plane channel with a porous substrate modeled using the Volume Averaged Navier-Stokes (VANS) equations. Modal stability analysis shows the destabilization of the flow with increasing porosity of the layer. The instability mode originates from the homogeneous fluid region of the channel for all the values of porosity considered but the governing mechanism changes. Perturbation kinetic energy analysis reveals the importance of viscous dissipation at low porosity values while dissipation in the porous substrate becomes significant at higher porosity. Scaling analysis highlights the invariance of the critical wavenumber with changing porosity. On the other hand, the critical Reynolds number remains invariant at low porosity and scales as Re-c similar to (H/delta)(1.4) at high porosity where delta is the typical thickness of the vorticity layer at the fluid-porous interface. This reveals the existence of a Tollmien-Schlichting-like viscous instability mechanism at low porosity values, and Rayleigh analysis shows the presence of an inviscid instability mechanism at high porosity. For the whole range of porosities considered, the non-modal analysis shows that the optimal mechanism responsible for transient energy amplification is the lift-up effect, giving rise to streaky structure as in single-phase plane Poiseuille flow. The present results strongly suggest that the transition to turbulence follows the same path as that of classical Poiseuille flow at low porosity values, while it is dictated by the modal instability for high porosity values. SAS. All rights reserved.

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 75, p. 29-43
Keywords [en]
Porous channel flow, Instability
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-245884DOI: 10.1016/j.euromechflu.2018.11.013ISI: 000458710700003Scopus ID: 2-s2.0-85059321599OAI: oai:DiVA.org:kth-245884DiVA, id: diva2:1295209
Note

QC 20180311

Available from: 2019-03-11 Created: 2019-03-11 Last updated: 2019-03-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Ghosh, SouvikLoiseau, Jean-ChristopheBrandt, Luca

Search in DiVA

By author/editor
Ghosh, SouvikLoiseau, Jean-ChristopheBrandt, Luca
By organisation
MechanicsSeRC - Swedish e-Science Research CentreLinné Flow Center, FLOW
In the same journal
European journal of mechanics. B, Fluids
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 25 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf