Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Recyclable fully biobased chitosan adsorbents spray-dried in one-pot to microscopic size and enhanced adsorption capacity
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology. (Polymer Technology)ORCID iD: 0000-0002-8090-088X
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.ORCID iD: 0000-0002-5850-8873
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.ORCID iD: 0000-0002-7790-8987
Show others and affiliations
2019 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 5, p. 1956-1964Article in journal (Refereed) Published
Abstract [en]

A facile one-pot spray-drying process was developed for fabrication and in-situ crosslinking of chitosan microspheres to improve the adsorption capacity by microscopic design. A fully biobased nature was achieved by utilizing genipin (GP) as a crosslinking agent and chitosan derived nano-graphene oxide (nGO) as a property tuner. The produced chitosan microspheres were further proven as powerful adsorbents for common wastewater contaminants such as anionic dyes and pharmaceutical contaminants, here modelled by methyl orange (MO) and diclofenac sodium (DCF). By regulating the amount of GP and nGO, as well as by controlling the process parameters including the spraydrying inlet temperature and post-heat treatment, the surface morphology, size, zeta potential and adsorption efficiency of the microspheres could be tuned accordingly. The adsorption efficiency for MO and DCF reached 98.9 and 100 %, respectively. The microspheres retained high DCF adsorption efficiency after six adsorption and desorption cycles and the recyclability was improved by incorporated nGO. The fabricated microspheres, thus, have great potential as reusable and eco-friendly adsorbents.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019. Vol. 20, no 5, p. 1956-1964
Keywords [en]
In-situ crosslinking, microspheres, chitosan, spray drying, genipin, biobased, recyclable
National Category
Polymer Chemistry
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-248442DOI: 10.1021/acs.biomac.9b00186ISI: 000468120800012Scopus ID: 2-s2.0-85064830922OAI: oai:DiVA.org:kth-248442DiVA, id: diva2:1303279
Note

QC 20190410

Available from: 2019-04-09 Created: 2019-04-09 Last updated: 2019-09-20
In thesis
1. From Polysaccharides to Functional Materials for Trace Pharmaceutical Adsorption
Open this publication in new window or tab >>From Polysaccharides to Functional Materials for Trace Pharmaceutical Adsorption
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The transition to bioeconomy will reduce our dependency on fossil fuels as well as contribute to a more sustainable society. Within this framework, exploitation and development of renewable substitutes to petroleum-based products provides feasible roadmap for the material design. Here a perspective is provided to how the natural polysaccharides chitosan (CS) and/or cellulose (CL) could be elaborated and transformed to high-performance materials with the explicit aim of removing trace pharmaceutical contaminants from the wastewater, thus facilitating the sustainable development. In the first part of the thesis, chitosan and cellulose were converted to the carbon spheres (C-sphere) through a microwave-assisted hydrothermal carbonization process, and C-sphere was further broken down to the nanographene oxide (nGO) via a simple oxidation route. On this foundation, a green pathway was developed for fabrication of biobased materials for wastewater purification. First, macroporous chitosan-based composite hydrogels with controllable properties were developed, where chitosan-derived nGO worked as a functional property enhancer. Second, a further development changing from the bulky hydrogels to microgels consisting of CS composite particles in the microscopic size was achieved by a fast one-pot spraying-drying process. The crosslinking reaction occurred in situ during the spray-drying. Last, the C-sphere by-itself was also believed to be a potential adsorbent for wastewater contaminants. In the next step the prepared systems were evaluated for their capacity to adsorb pharmaceutical contaminants. Diclofenac sodium (DCF) was utilized as the model drug, and the three fabricated bio-adsorbents all demonstrated effective DCF adsorption performance, with the adsorption efficiency varying from 65.6 to 100%. Moreover, the DCF adsorption kinetics, isotherms and thermodynamic study were also investigated to reveal the nature of the adsorption process with the different materials. Finally, chitosan-based microspheres were selected for the reusability study, with the adsorption efficiency above 70% retained after six adsorption-desorption cycles, thus further endowing the promising potential of the fabricated bio-adsorbents for commercial applications.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 48
Series
TRITA-CBH-FOU ; 2019:21
Keywords
Chitosan, cellulose, nanographene oxide, carbon spheres, hydrogel, microsphere, adsorbent, pharmaceutical, microwave, spray-drying
National Category
Environmental Engineering Nano Technology Textile, Rubber and Polymeric Materials Physical Chemistry Polymer Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-248454 (URN)978-91-7873-167-1 (ISBN)
Public defence
2019-05-23, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20190411

Available from: 2019-04-11 Created: 2019-04-09 Last updated: 2019-05-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Feng, ZhaoxuanOdelius, KarinHakkarainen, MinnaAlbertsson, Ann-Christine

Search in DiVA

By author/editor
Feng, ZhaoxuanTakahiro, DanjoOdelius, KarinHakkarainen, MinnaAlbertsson, Ann-Christine
By organisation
Polymer TechnologyFibre- and Polymer Technology
In the same journal
Biomacromolecules
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 144 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf