Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysing the correlation between vehicle responses and track irregularities using dynamic simulations and measurements
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.ORCID iD: 0000-0002-9564-8437
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.ORCID iD: 0000-0002-2571-4662
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.ORCID iD: 0000-0002-8237-5847
2019 (English)In: Proceedings of the Institution of mechanical engineers. Part F, journal of rail and rapid transit, ISSN 0954-4097, E-ISSN 2041-3017Article in journal (Refereed) Published
Abstract [en]

Track irregularities play a key role in vehicle response, but it is not uncommon to find irregularities with similar statistical characteristics giving very different vehicle behaviour. It is therefore important to find a consistent way of describing track irregularities, which better matches the vehicle behaviour to facilitate an efficient track maintenance and vehicle acceptance testing. Various proposals have been made to resolve this issue, although with limited success. In the present paper, a methodology to break down the track–vehicle interaction into steps, by analysing the irregularity–response correlation in detail, is applied to both the measured and simulated data of a passenger coach. The results show a very good agreement and a high correlation coefficient between the vertical axle box acceleration and the second spatial derivative of the vertical track irregularities when analysing the simulated data, but not for the measured data. Parameter variations are carried out through simulations, in which the vertical track stiffness, vehicle unsprung mass, vertical primary suspension and different combinations of track irregularities are varied. The results show that track stiffness mainly affects the axle box acceleration whereas the primary vertical suspension stiffness and unsprung mass predominantly affect the vertical wheel–rail forces. Therefore, it is important to understand the influence of track stiffness, especially with the help of the measured data, and the methods that reduce its influence should be investigated in future works.

Place, publisher, year, edition, pages
Sage Publications, 2019.
National Category
Vehicle Engineering
Identifiers
URN: urn:nbn:se:kth:diva-248967DOI: 10.1177/0954409719840450Scopus ID: 2-s2.0-85064008486OAI: oai:DiVA.org:kth-248967DiVA, id: diva2:1303628
Note

QC 20190507

Available from: 2019-04-10 Created: 2019-04-10 Last updated: 2019-05-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Karis, TomasBerg, Mats

Search in DiVA

By author/editor
Karis, TomasBerg, MatsStichel, Sebastian
By organisation
Rail VehiclesThe KTH Railway Group
In the same journal
Proceedings of the Institution of mechanical engineers. Part F, journal of rail and rapid transit
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 364 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf