CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Graph Techniques for Matrix Equations and Eigenvalue DynamicsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2008 (English)Doctoral thesis, comprehensive summary (Other scientific)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH , 2008. , vi, 29 p.
##### Series

Trita-MAT. MA, ISSN 1401-2278 ; 08-MA-02
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-4608ISBN: 978-91-7178-845-0 (print)OAI: oai:DiVA.org:kth-4608DiVA: diva2:13070
##### Public defence

2008-02-08, F3, KTH, Lindstedtsvägen 26, Stockholm, 14:00
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true});
##### Note

QC 20100630Available from: 2008-01-16 Created: 2008-01-16 Last updated: 2010-07-01Bibliographically approved
##### List of papers

One way to construct noncommutative analogues of a Riemannian manifold Σ is to make use of the Toeplitz quantization procedure. In Paper III and IV, we construct C-algebras for a continuously deformable class of spheres and tori, and by introducing the directed graph of a representation, we can completely characterize the representation theory of these algebras in terms of the corresponding graphs. It turns out that the irreducible representations are indexed by the periodic orbits and N-strings of an iterated map s:(reals) ^{2}→(reals)^{2 }associated to the algebra. As our construction allows for transitions between spheres and tori (passing through a singular surface), one easily sees how the structure of the matrices changes as the topology changes.

In Paper II, noncommutative analogues of minimal surface and membrane equations are constructed and new solutions are presented -- some of which correspond to minimal tori embedded in *S*^{7}.

Paper I is concerned with the problem of finding differential equations for the eigenvalues of a symmetric N × N matrix satisfying Xdd=0.

Namely, by finding *N*(*N*-1)/2 suitable conserved quantities, the time-evolution of X (with arbitrary initial conditions), is reduced to non-linear equations involving only the eigenvalues of Χ.

1. Eigenvalue Dynamics off the Calogero-Moser system$(function(){PrimeFaces.cw("OverlayPanel","overlay13066",{id:"formSmash:j_idt482:0:j_idt486",widgetVar:"overlay13066",target:"formSmash:j_idt482:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Spinning Membranes$(function(){PrimeFaces.cw("OverlayPanel","overlay13067",{id:"formSmash:j_idt482:1:j_idt486",widgetVar:"overlay13067",target:"formSmash:j_idt482:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Noncommutative Riemann Surfaces by Embeddings in R-3$(function(){PrimeFaces.cw("OverlayPanel","overlay13068",{id:"formSmash:j_idt482:2:j_idt486",widgetVar:"overlay13068",target:"formSmash:j_idt482:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Representation theory of C-algebras for a higher order class of spheres and tori$(function(){PrimeFaces.cw("OverlayPanel","overlay13069",{id:"formSmash:j_idt482:3:j_idt486",widgetVar:"overlay13069",target:"formSmash:j_idt482:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1144",{id:"formSmash:j_idt1144",widgetVar:"widget_formSmash_j_idt1144",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1197",{id:"formSmash:lower:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1198_j_idt1200",{id:"formSmash:lower:j_idt1198:j_idt1200",widgetVar:"widget_formSmash_lower_j_idt1198_j_idt1200",target:"formSmash:lower:j_idt1198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});