Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structure of the Current Sheet in the 11 July 2017 Electron Diffusion Region Event
Austrian Acad Sci, Space Res Inst, Graz, Austria..
Austrian Acad Sci, Space Res Inst, Graz, Austria.;Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA..
Austrian Acad Sci, Space Res Inst, Graz, Austria..
Austrian Acad Sci, Space Res Inst, Graz, Austria..ORCID iD: 0000-0001-6271-0110
Show others and affiliations
2019 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 124, no 2, p. 1173-1186Article in journal (Refereed) Published
Abstract [en]

The structure of the current sheet along the Magnetospheric Multiscale (MMS) orbit is examined during the 11 July 2017 Electron Diffusion Region (EDR) event. The location of MMS relative to the X-line is deduced and used to obtain the spatial changes in the electron parameters. The electron velocity gradient values are used to estimate the reconnection electric field sustained by nongyrotropic pressure. It is shown that the observations are consistent with theoretical expectations for an inner EDR in 2-D reconnection. That is, the magnetic field gradient scale, where the electric field due to electron nongyrotropic pressure dominates, is comparable to the gyroscale of the thermal electrons at the edge of the inner EDR. Our approximation of the MMS observations using a steady state, quasi-2-D, tailward retreating X-line was valid only for about 1.4 s. This suggests that the inner EDR is localized; that is, electron outflow jet braking takes place within an ion inertia scale from the X-line. The existence of multiple events or current sheet processes outside the EDR may play an important role in the geometry of reconnection in the near-Earth magnetotail. Plain Language Summary Magnetic reconnection is the process by which magnetic field lines coming from one region are broken and reconnected with magnetic field lines coming from another region. The simplest descriptions of magnetic reconnection are two dimensional, and a number of theoretical predictions have been made using the two-dimensional assumption. We study a magnetic reconnection event observed by the Magnetospheric Multiscale spacecraft on 11 July 2017 and find approximate agreement between the observations and the predictions of a two-dimensional model. The agreement includes the scale size of the reconnection region, details of the particle orbits, and the rate of reconnection.

Place, publisher, year, edition, pages
American Geophysical Union (AGU), 2019. Vol. 124, no 2, p. 1173-1186
Keywords [en]
magnetic reconnection, electron diffusion region, current sheet, Magnetospheric Multiscale (MMS)
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:kth:diva-249897DOI: 10.1029/2018JA026028ISI: 000462015700023Scopus ID: 2-s2.0-85059906842OAI: oai:DiVA.org:kth-249897DiVA, id: diva2:1307274
Note

QC 20190426

Available from: 2019-04-26 Created: 2019-04-26 Last updated: 2019-04-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Lindqvist, Per-Arne

Search in DiVA

By author/editor
Baumjohann, WolfgangLindqvist, Per-Arne
By organisation
Space and Plasma Physics
In the same journal
Journal of Geophysical Research - Space Physics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf