Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Feature Contraction: New ConvNet Regularization in Image Classification
KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, Perception and Learning, RPL.
KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, Perception and Learning, RPL.ORCID iD: 0000-0002-4266-6746
2018 (English)Conference paper, Oral presentation with published abstract (Refereed)
Place, publisher, year, edition, pages
2018.
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:kth:diva-250575OAI: oai:DiVA.org:kth-250575DiVA, id: diva2:1308119
Conference
British Machine Vision Conference
Note

QC 20190624

Available from: 2019-04-30 Created: 2019-04-30 Last updated: 2019-06-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://bmvc2018.org/contents/papers/0660.pdf

Authority records BETA

Li, VladimirMaki, Atsuto

Search in DiVA

By author/editor
Li, VladimirMaki, Atsuto
By organisation
Robotics, Perception and Learning, RPL
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf