CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt178",{id:"formSmash:upper:j_idt178",widgetVar:"widget_formSmash_upper_j_idt178",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt181_j_idt187",{id:"formSmash:upper:j_idt181:j_idt187",widgetVar:"widget_formSmash_upper_j_idt181_j_idt187",target:"formSmash:upper:j_idt181:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Spectrahedrality of hyperbolicity cones of multivariate matching polynomialsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2018 (English)In: Journal of Algebraic Combinatorics, ISSN 0925-9899, E-ISSN 1572-9192Article in journal (Refereed) In press
##### Abstract [en]

##### Place, publisher, year, edition, pages

Springer, 2018.
##### Keywords [en]

matching polynomial, independence polynomial, generalized Lax conjecture, spectrahedral representation
##### National Category

Discrete Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-250763DOI: 10.1007/s10801-018-0848-9OAI: oai:DiVA.org:kth-250763DiVA, id: diva2:1313629
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt611",{id:"formSmash:j_idt611",widgetVar:"widget_formSmash_j_idt611",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt625",{id:"formSmash:j_idt625",widgetVar:"widget_formSmash_j_idt625",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt640",{id:"formSmash:j_idt640",widgetVar:"widget_formSmash_j_idt640",multiple:true});
##### Note

##### In thesis

The generalized Lax conjecture asserts that each hyperbolicity cone is a linear slice of the cone of positive semidefinite matrices. We prove the conjecture for a multivariate generalization of the matching polynomial. This is further extended (albeit in a weaker sense) to a multivariate version of the independence polynomial for simplicial graphs. As an application we give a new proof of the conjecture for elementary symmetric polynomials (originally due to Brändén). Finally we consider a hyperbolic convolution of determinant polynomials generalizing an identity of Godsil and Gutman.

QC 20190510

Available from: 2019-05-05 Created: 2019-05-05 Last updated: 2019-10-11Bibliographically approved1. Combinatorics and zeros of multivariate polynomials$(function(){PrimeFaces.cw("OverlayPanel","overlay1314811",{id:"formSmash:j_idt998:0:j_idt1002",widgetVar:"overlay1314811",target:"formSmash:j_idt998:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1915",{id:"formSmash:j_idt1915",widgetVar:"widget_formSmash_j_idt1915",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1968",{id:"formSmash:lower:j_idt1968",widgetVar:"widget_formSmash_lower_j_idt1968",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1969_j_idt1971",{id:"formSmash:lower:j_idt1969:j_idt1971",widgetVar:"widget_formSmash_lower_j_idt1969_j_idt1971",target:"formSmash:lower:j_idt1969:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});