Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of the Effect of Severe Accident Scenario on Debris Properties in Lower Plenum of Nordic BWR Using Different Versions of MELCOR Code
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.ORCID iD: 0000-0001-8216-9376
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.ORCID iD: 0000-0002-0683-9136
2019 (English)In: Science and Technology of Nuclear Installations, ISSN 1687-6075, E-ISSN 1687-6083, article id 5310808Article in journal (Refereed) Published
Abstract [en]

Nordic Boiling Water Reactors (BWRs) employ ex-vessel debris coolability as a severe accident management strategy (SAM). Core melt is released into a deep pool of water where formation of noncoolable debris bed and ex-vessel steam explosion can pose credible threats to containment integrity. Success of the strategy depends on the scenario of melt release from the vessel that determines the melt-coolant interaction phenomena. The melt release conditions are determined by the in-vessel phase of severe accident progression. Specifically, properties of debris relocated into the lower plenum have influence on the vessel failure and melt release mode. In this work we use MELCOR code for prediction of the relocated debris. Over the years, many code modifications have been made to improve prediction of severe accident progression in light-water reactors. The main objective of this work is to evaluate the effect of models and best practices in different versions of MELCOR code on the in-vessel phase of different accident progression scenarios in Nordic BWR. The results of the analysis show that the MELCOR code versions 1.86 and 2.1 generate qualitatively similar results. Significant discrepancy in the timing of the core support failure and relocated debris mass in the MELCOR 2.2 compared to the MELCOR 1.86 and 2.1 has been found for a domain of scenarios with delayed time of depressurization. The discrepancies in the results can be explained by the changes in the modeling of degradation of the core components and changes in the Lipinski dryout model in MELCOR 2.2.

Place, publisher, year, edition, pages
Hindawi Publishing Corporation, 2019. article id 5310808
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-251723DOI: 10.1155/2019/5310808ISI: 000466590400001Scopus ID: 2-s2.0-85065230309OAI: oai:DiVA.org:kth-251723DiVA, id: diva2:1316619
Note

QC 20190520

Available from: 2019-05-20 Created: 2019-05-20 Last updated: 2019-05-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Galushin, SergeyKudinov, Pavel

Search in DiVA

By author/editor
Galushin, SergeyKudinov, Pavel
By organisation
Nuclear Power Safety
In the same journal
Science and Technology of Nuclear Installations
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf