Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
All-Aqueous SI-ARGET ATRP from Cellulose Nanofibrils Using Hydrophilic and Hydrophobic Monomers
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0002-8348-2273
2019 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 5, p. 1937-1943Article in journal (Refereed) Published
Abstract [en]

An all-water-based procedure for "controlled" polymer grafting from cellulose nanofibrils is reported. Polymers and copolymers of poly(ethylene glycol) methyl ether methacrylate (POEGMA) and poly(methyl methacrylate) (PMMA) were synthesized by surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP) from the cellulose nanofibril (CNF) surface in water. A macroinitiator was electrostatically immobilized to the CNF surface, and its amphiphilic nature enabled polymerizations of both hydrophobic and hydrophilic monomers in water. The electrostatic interactions between the macroinitiator and the CNF surface were studied by quartz crystal microbalance with dissipation energy (QCM-D) and showed the formation of a rigid adsorbed layer, which did not desorb upon washing, corroborating the anticipated electrostatic interactions. Polymerizations were conducted from dispersed modified CNFs as well as from preformed modified CNF aerogels soaked in water. The polymerizations yielded matrix-free composite materials with a CNF content of approximately 1-2 and 3-6 wt % for dispersion-initiated and aerogel-initiated CNFs, respectively.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2019. Vol. 20, no 5, p. 1937-1943
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-252629DOI: 10.1021/acs.biomac.9b00153ISI: 000468120800010PubMedID: 30889349Scopus ID: 2-s2.0-85064116173OAI: oai:DiVA.org:kth-252629DiVA, id: diva2:1319589
Note

QC 20190603

Available from: 2019-06-03 Created: 2019-06-03 Last updated: 2019-06-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Kaldéus, TahaniSanchez, CarmenMalmström, Eva

Search in DiVA

By author/editor
Kaldéus, TahaniLeggieri, Maria Rosella TelarettiSanchez, CarmenMalmström, Eva
By organisation
Wallenberg Wood Science CenterFibre- and Polymer Technology
In the same journal
Biomacromolecules
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 88 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf