References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Using the sequential linear integer programming method as a post-processor for stress-constrained topology optimization problemsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2008 (English)In: International Journal for Numerical Methods in Engineering, ISSN 0029-5981, E-ISSN 1097-0207, Vol. 76, no 10, 1544-1567 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2008. Vol. 76, no 10, 1544-1567 p.
##### Keyword [en]

topology optimization, stress constraints, 0-1 problems, post-processing
##### National Category

Computational Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-8013DOI: 10.1002/nme.2378ISI: 000261277900005ScopusID: 2-s2.0-60949087151OAI: oai:DiVA.org:kth-8013DiVA: diva2:13219
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Note

QC 20100917. Uppdaterad från submitted till published (20100917).Available from: 2008-02-21 Created: 2008-02-21 Last updated: 2010-09-17Bibliographically approved
##### In thesis

This paper deals with topology optimization of load-carrying structures defined on discretized continuum design domains. In particular, the mininium compliance problem with stress constraints is considered. The finite element method is used to discretize the design domain into n finite elements and the design of a certain structure is represented by an n-dimensional binary design variable vector. In order to solve the problems, the binary constraints on the design variables are initially relaxed and the problems are solved with both the method of moving asymptotes and the sparse non-linear optimizer solvers for continuous optimization in order to compare the two solvers. By solving a sequence of problems with a sequentially lower limit on the amount of grey allowed, designs that are close to 'black-and-white' are obtained. In order to get locally optimal solutions that are purely {0, 1}(n). a sequential linear integer programming method is applied as a post-processor. Numerical results are presented for some different test problems.

1. On Methods for Discrete Topology Optimization of Continuum Structures$(function(){PrimeFaces.cw("OverlayPanel","overlay13221",{id:"formSmash:j_idt731:0:j_idt735",widgetVar:"overlay13221",target:"formSmash:j_idt731:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});